Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire o...Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire organs at a subcellular resolution have revolutionized morphological studies of the brain.To extend their applicability to experimental nerve repair studies we adapted these techniques to nerves and their motor and sensory targets in rats.The solvent-based protocols rendered harvested peripheral nerves and their target organs transparent within 24 hours while preserving tissue architecture and fluorescence.The optical clearing was compatible with conventional laboratory techniques,including retrograde labeling studies,and computational image segmentation,providing fast and precise cell quantitation.Further,optically cleared organs enabled three-dimensional morphometry at an unprecedented scale including dermatome-wide innervation studies,tracing of intramuscular nerve branches or mapping of neurovascular networks.Given their wide-ranging applicability,rapid processing times,and low costs,tissue clearing techniques are likely to be a key technology for next-generation nerve repair studies.All procedures were approved by the Hospital for Sick Children’s Laboratory Animal Services Committee(49871/9)on November 9,2019.展开更多
The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in t...The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
BACKGROUND The Comprehensive Geriatric Assessment(CGA)was introduced late in China and is primarily used for investigating and evaluating health problems in older adults in outpatient and community settings.However,th...BACKGROUND The Comprehensive Geriatric Assessment(CGA)was introduced late in China and is primarily used for investigating and evaluating health problems in older adults in outpatient and community settings.However,there are few reports on its application in hospitalized patients,especially older patients with diabetes and hypertension.AIM To explore the nursing effect of CGA in hospitalized older patients with diabetes and hypertension.METHODS We performed a retrospective single-center analysis of patients with comorbid diabetes mellitus and hypertension who were hospitalized and treated in the Jiangyin Hospital of Traditional Chinese Medicine between September 2020 and June 2022.Among the 80 patients included,40 received CGA nursing interventions(study group),while the remaining 40 received routine nursing care(control group).The study group's comprehensive approach included creating personalized CGA profiles,multidisciplinary assessments,and targeted inter-ventions in areas,such as nutrition,medication adherence,exercise,and mental health.However,the control group received standard nursing care,including general and medical history collection,fall prevention measures,and regular patient monitoring.After 6 months of nursing care implementation,we evaluated the effectiveness of the interventions,including assessments of blood glucose levels fasting blood glucose,2-h postprandial blood glucose,and glycated hemoglobin,type A1c(HbA1c);blood pressure indicators such as diastolic blood pressure(DBP)and systolic blood pressure(SBP);quality of life as measured by the 36-item Short Form Survey(SF-36)questionnaire;and treatment adherence.RESULTS After 6 months,the nursing outcomes indicated that patients who underwent CGA nursing interventions experienced a significant decrease in blood glucose indicators,such as fasting blood glucose,2-h postprandial blood glucose,and HbA1c,as well as blood pressure indicators,including DBP and SBP,compared with the control group(P<0.05).Quality of life assessments,including physical health,emotion,physical function,overall health,and mental health,showed marked improvements compared to the control group(P<0.05).In the study group,38 patients adhered to the clinical treatment requirements,whereas only 32 in the control group adhered to the clinical treatment requirements.The probability of treatment adherence among patients receiving CGA nursing interventions was higher than that among patients receiving standard care(95%vs 80%,P<0.05).CONCLUSION The CGA nursing intervention significantly improved glycemic control,blood pressure management,and quality of life in hospitalized older patients with diabetes and hypertension,compared to routine care.展开更多
BACKGROUND Ischemic stroke(IS)is a widely recognized disease characterized by high preva-lence,mortality,morbidity,disability,and recurrence rates.It ranks prominently in terms of mortality,constituting 60%-80%of stro...BACKGROUND Ischemic stroke(IS)is a widely recognized disease characterized by high preva-lence,mortality,morbidity,disability,and recurrence rates.It ranks prominently in terms of mortality,constituting 60%-80%of stroke cases.AIM To explore the impact of comprehensive nursing care on the quality of life and swallowing function in individuals diagnosed with IS.METHODS This study comprised 172 patients with IS admitted to our hospital between February 2018 to March 2021.The participants were divided into two groups,namely the control group(n=80)receiving routine care and the research group(n=92)receiving comprehensive care.Various assessment scales,including the standard swallowing function assessment scale(SSA),National Institutes of Health Stroke scale(NIHSS),European stroke scale(ESS),self-rating anxiety scale(SAS),self-rating depression scale(SDS),Barthel index(BI),and the motor func-tion assessment scale(MAS),were employed to evaluate the improvement in swallowing function,neurological deficits,clinical outcomes,anxiety,depression,daily living activities,and motor function before and after care.Furthermore,the study compared the occurrence of adverse reactions during the nursing period,life quality before and after the intervention,rehabilitation compliance,and nursing satisfaction between the two groups.RESULTS After the nursing intervention,the research group exhibited significantly improved SSA and NIHSS scores compared to the control group(P<0.05).Moreover,both groups demonstrated significant reductions in SAS and SDS scores(P<0.05),with the research group showing more obvious advantages(P<0.05).Compared to the control group,the research group displayed significantly better ESS,BI,and MAS scores(P<0.05),coupled with a lower incidence of adverse reactions(P<0.05).Additionally,the research group demonstrated markedly higher levels of life quality,rehabilitation compliance,and nursing satisfaction compared to the control group(P<0.05).CONCLUSION Comprehensive nursing effectively improved swallowing function,quality of life,and patient satisfaction,high-lighting its clinical significance.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc...An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.展开更多
Dear Editor,We write to present a 6-year-old boy with bilateral choroidal ganglioneuroma(CG)by comprehensive multimodal imaging(MMI)in a duration of 6-year follow-up.To our knowledge,this is the first case report with...Dear Editor,We write to present a 6-year-old boy with bilateral choroidal ganglioneuroma(CG)by comprehensive multimodal imaging(MMI)in a duration of 6-year follow-up.To our knowledge,this is the first case report with elaborate data to delineate the natural history of visual function and MMI in a boy with rare bilateral CG,confirmed by choroid biopsy.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the speci...Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of Ch...Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of China’s food security in the region.However,the crop yields in these rotation systems are 1.25‒14.73%lower in this region than the national averages.Intelligent decision-making with machine learning can analyze the key factors for obtaining better benefits,but it has rarely been used to enhance the probability of obtaining such benefits from rotations in Southwest China.Thus,we used a data-intensive approach to construct an intelligent decision‒making system with machine learning to provide strategies for improving the benefits of rice-rape,rice-wheat,and rice-garlic rotations in Southwest China.The results show that raising the yield and partial fertilizer productivity(PFP)by increasing seed input under high fertilizer application provided the optimal benefits with a 10%probability in the rice-garlic system.Obtaining high yields and greenhouse gas(GHG)emissions by increasing the N application and reducing the K application provided suboptimal benefits with an 8%probability in the rice-rape system.Reducing N and P to enhance PFP and yield provided optimal benefits with the lowest probability(8%)in the rice‒wheat system.Based on the predictive analysis of a random forest model,the optimal benefits were obtained with fertilization regimes by reducing N by 25%and increasing P and K by 8 and 74%,respectively,in the rice-garlic system,reducing N and K by 54 and by 36%,respectively,and increasing P by 38%in rice-rape system,and reducing N by 4%and increasing P and K by 65 and 23%in rice-wheat system.These strategies could be further optimized by 17‒34%for different benefits,and all of these measures can improve the effectiveness of the crop rotation systems to varying degrees.Overall,these findings provide insights into optimal agricultural inputs for higher benefits through an intelligent decision-making system with machine learning analysis in the rice-rape,rice‒wheat,and rice-garlic systems.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off...Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.展开更多
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
基金the German Research Foundation(DA 2255/1-1,to SCD).
文摘Morphological analyses are key outcome assessments for nerve regeneration studies but are historically limited to tissue sections.Novel optical tissue clearing techniques enabling three-dimensional imaging of entire organs at a subcellular resolution have revolutionized morphological studies of the brain.To extend their applicability to experimental nerve repair studies we adapted these techniques to nerves and their motor and sensory targets in rats.The solvent-based protocols rendered harvested peripheral nerves and their target organs transparent within 24 hours while preserving tissue architecture and fluorescence.The optical clearing was compatible with conventional laboratory techniques,including retrograde labeling studies,and computational image segmentation,providing fast and precise cell quantitation.Further,optically cleared organs enabled three-dimensional morphometry at an unprecedented scale including dermatome-wide innervation studies,tracing of intramuscular nerve branches or mapping of neurovascular networks.Given their wide-ranging applicability,rapid processing times,and low costs,tissue clearing techniques are likely to be a key technology for next-generation nerve repair studies.All procedures were approved by the Hospital for Sick Children’s Laboratory Animal Services Committee(49871/9)on November 9,2019.
文摘The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金the Research Project of the Jiangyin Municipal Health Commission,No.G202008。
文摘BACKGROUND The Comprehensive Geriatric Assessment(CGA)was introduced late in China and is primarily used for investigating and evaluating health problems in older adults in outpatient and community settings.However,there are few reports on its application in hospitalized patients,especially older patients with diabetes and hypertension.AIM To explore the nursing effect of CGA in hospitalized older patients with diabetes and hypertension.METHODS We performed a retrospective single-center analysis of patients with comorbid diabetes mellitus and hypertension who were hospitalized and treated in the Jiangyin Hospital of Traditional Chinese Medicine between September 2020 and June 2022.Among the 80 patients included,40 received CGA nursing interventions(study group),while the remaining 40 received routine nursing care(control group).The study group's comprehensive approach included creating personalized CGA profiles,multidisciplinary assessments,and targeted inter-ventions in areas,such as nutrition,medication adherence,exercise,and mental health.However,the control group received standard nursing care,including general and medical history collection,fall prevention measures,and regular patient monitoring.After 6 months of nursing care implementation,we evaluated the effectiveness of the interventions,including assessments of blood glucose levels fasting blood glucose,2-h postprandial blood glucose,and glycated hemoglobin,type A1c(HbA1c);blood pressure indicators such as diastolic blood pressure(DBP)and systolic blood pressure(SBP);quality of life as measured by the 36-item Short Form Survey(SF-36)questionnaire;and treatment adherence.RESULTS After 6 months,the nursing outcomes indicated that patients who underwent CGA nursing interventions experienced a significant decrease in blood glucose indicators,such as fasting blood glucose,2-h postprandial blood glucose,and HbA1c,as well as blood pressure indicators,including DBP and SBP,compared with the control group(P<0.05).Quality of life assessments,including physical health,emotion,physical function,overall health,and mental health,showed marked improvements compared to the control group(P<0.05).In the study group,38 patients adhered to the clinical treatment requirements,whereas only 32 in the control group adhered to the clinical treatment requirements.The probability of treatment adherence among patients receiving CGA nursing interventions was higher than that among patients receiving standard care(95%vs 80%,P<0.05).CONCLUSION The CGA nursing intervention significantly improved glycemic control,blood pressure management,and quality of life in hospitalized older patients with diabetes and hypertension,compared to routine care.
基金This study was approved by the Ethics Committee of Hengyang Maternal and Child Health Hospital(No.202001151).
文摘BACKGROUND Ischemic stroke(IS)is a widely recognized disease characterized by high preva-lence,mortality,morbidity,disability,and recurrence rates.It ranks prominently in terms of mortality,constituting 60%-80%of stroke cases.AIM To explore the impact of comprehensive nursing care on the quality of life and swallowing function in individuals diagnosed with IS.METHODS This study comprised 172 patients with IS admitted to our hospital between February 2018 to March 2021.The participants were divided into two groups,namely the control group(n=80)receiving routine care and the research group(n=92)receiving comprehensive care.Various assessment scales,including the standard swallowing function assessment scale(SSA),National Institutes of Health Stroke scale(NIHSS),European stroke scale(ESS),self-rating anxiety scale(SAS),self-rating depression scale(SDS),Barthel index(BI),and the motor func-tion assessment scale(MAS),were employed to evaluate the improvement in swallowing function,neurological deficits,clinical outcomes,anxiety,depression,daily living activities,and motor function before and after care.Furthermore,the study compared the occurrence of adverse reactions during the nursing period,life quality before and after the intervention,rehabilitation compliance,and nursing satisfaction between the two groups.RESULTS After the nursing intervention,the research group exhibited significantly improved SSA and NIHSS scores compared to the control group(P<0.05).Moreover,both groups demonstrated significant reductions in SAS and SDS scores(P<0.05),with the research group showing more obvious advantages(P<0.05).Compared to the control group,the research group displayed significantly better ESS,BI,and MAS scores(P<0.05),coupled with a lower incidence of adverse reactions(P<0.05).Additionally,the research group demonstrated markedly higher levels of life quality,rehabilitation compliance,and nursing satisfaction compared to the control group(P<0.05).CONCLUSION Comprehensive nursing effectively improved swallowing function,quality of life,and patient satisfaction,high-lighting its clinical significance.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金by Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202312216042)Natural Science Key Research Project of Colleges and Universities in Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei.
基金Supported by the Construction Project of High-Level Hospitals in Guangdong Province(No.303020107,No.303010303058)National Natural Science Foundation of China(No.82271092)+1 种基金Guangdong Basic and Applied Basic Research Foundation(No.2023A1515010430)Guangzhou Municipal Science and Technology Key Project(No.2024A03J0171).
文摘Dear Editor,We write to present a 6-year-old boy with bilateral choroidal ganglioneuroma(CG)by comprehensive multimodal imaging(MMI)in a duration of 6-year follow-up.To our knowledge,this is the first case report with elaborate data to delineate the natural history of visual function and MMI in a boy with rare bilateral CG,confirmed by choroid biopsy.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
基金supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(Grant No.IMHE-ZDRW-08)the Sichuan Science and Technology Program(Grant No.2022JDR0209).
文摘Debris flow hazards seriously threaten thesafety and sustainable development of mountainousareas. Numerous debris flow mitigation measures havebeen implemented worldwide;however, acomprehensive assessment of the specific disasterreduction effects of these measures and their economic,social and ecological benefits is yet to be performed.The western region of Sichuan Province frequentlysuffers from geohazards such as debris flow, and thegovernment has adopted many mitigation measures.This study assessed the benefits of debris flowmitigation measures and identified the key influencingfactors via a field-based study conducted in 81 villagesin western Sichuan province, China. A framework forthe evaluation of the benefits of rural debris flowmitigation measures was constructed andquantitatively evaluated using a survey. Snowballsampling was performed to recruit 81 village leadersand 468 farmers. The results showed that managementand engineering measures were the main methodsused to mitigate debris flow;ecological measures wereauxiliary. The average satisfaction scores of farmers forthese three types of measures were 4.07, 3.90, and 3.56,respectively (as measured on a five-point Likert scale).In contrast, in terms of the benefits of these mitigationmeasures, only a small proportion of villages (11.11%)obtained a high level of comprehensive benefits fromthe debris flow mitigation measures, while the majority(88.89%) received medium to low-level benefits. Toimprove this situation, we further studied and foundthat the main factors that restricted villages fromachieving high-level comprehensive benefits were theunpredictable nature of debris flows, labour forceoutflow and remoteness. Effective control measures, agood economic environment and strong governmentassistance were reported as crucial factors forimproving these comprehensive benefits. This studyprovides socio-scientific references for decisionmakingon rural debris flow mitigation measures while keeping villages at the centre of economic development.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金supported by the China Postdoctoral Science Foundation(2022M722301)the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows,China(BX202207)the Natural Science Foundation of Sichuan Province,China(2023NSFC0014 and 2024NSFSC1225).
文摘Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of China’s food security in the region.However,the crop yields in these rotation systems are 1.25‒14.73%lower in this region than the national averages.Intelligent decision-making with machine learning can analyze the key factors for obtaining better benefits,but it has rarely been used to enhance the probability of obtaining such benefits from rotations in Southwest China.Thus,we used a data-intensive approach to construct an intelligent decision‒making system with machine learning to provide strategies for improving the benefits of rice-rape,rice-wheat,and rice-garlic rotations in Southwest China.The results show that raising the yield and partial fertilizer productivity(PFP)by increasing seed input under high fertilizer application provided the optimal benefits with a 10%probability in the rice-garlic system.Obtaining high yields and greenhouse gas(GHG)emissions by increasing the N application and reducing the K application provided suboptimal benefits with an 8%probability in the rice-rape system.Reducing N and P to enhance PFP and yield provided optimal benefits with the lowest probability(8%)in the rice‒wheat system.Based on the predictive analysis of a random forest model,the optimal benefits were obtained with fertilization regimes by reducing N by 25%and increasing P and K by 8 and 74%,respectively,in the rice-garlic system,reducing N and K by 54 and by 36%,respectively,and increasing P by 38%in rice-rape system,and reducing N by 4%and increasing P and K by 65 and 23%in rice-wheat system.These strategies could be further optimized by 17‒34%for different benefits,and all of these measures can improve the effectiveness of the crop rotation systems to varying degrees.Overall,these findings provide insights into optimal agricultural inputs for higher benefits through an intelligent decision-making system with machine learning analysis in the rice-rape,rice‒wheat,and rice-garlic systems.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by the National Key Research and Development Project(2019YFC1906601)China the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences(C12021A04111)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ-040).
文摘Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.