期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Utilization of compressed natural gas for the production of carbon nanotubes 被引量:1
1
作者 Kim-Yang Lee Wei-Ming Yeoh +1 位作者 Siang-Piao Chai Abdul Rahman Mohamed 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第6期620-624,共5页
The present work aims at utilizing compressed natural gas (CNG) as carbon source for the synthesis of carbon nanotubes (CNTs) over CoO-MoO/Al2O3 catalyst via catalytic chemical vapor deposition (CCVD) method. Th... The present work aims at utilizing compressed natural gas (CNG) as carbon source for the synthesis of carbon nanotubes (CNTs) over CoO-MoO/Al2O3 catalyst via catalytic chemical vapor deposition (CCVD) method. The as-produced carbonaceous product was characterized by thermal gravimetric analyzer (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The experimental finding shows that CNTs were successfully produced from CNG while carbon nanofibers (CNFs) were formed as the side products. In addition, the catalytic activity and lifetime were found sustained and prolonged, as compared with using high purity methane as carbon source. The present study suggests an alternative route which can effectively produce CNTs and CNFs using low cost CNG. 展开更多
关键词 compressed natural gas carbon nanotubes carbon nanofibers catalytic chemical vapor deposition
下载PDF
Performance,combustion,and emission characteristics of on a diesel engine fuelled with hydrogen compressed natural gas and Kusum seed biodiesel
2
作者 Krishna Bharathi Parimi Bhatti Sukhvinder Kaur +1 位作者 Sathya Vara Prasad Lankapalli Jaikumar Sagari 《Waste Disposal and Sustainable Energy》 EI CSCD 2023年第2期151-163,共13页
Renewable fuels have many advantages over fossil fuels because they are biodegradable and sustainable,and help mitigate social and environmental problems.The objective of the present study is to evaluate the performan... Renewable fuels have many advantages over fossil fuels because they are biodegradable and sustainable,and help mitigate social and environmental problems.The objective of the present study is to evaluate the performance,combustion,and emission characteristics of a compression–ignition engine using hydrogen compressed natural gas(HCNG)-enriched Kusum seed biodiesel blend(KSOBD20).The flow rate of HCNG was set at 5 L/min,10 L/min,and 15 L/min,and the injection pressure was varied in the range of 180 bar to 240 bar.Brake thermal efficiency(BTE)and brake-specific fuel consumption(BSFC)were improved when HCNG was added to the KSOBD20.Combustion characteristics,namely,cylinder pressure(CP)and net heat release rate(NHRR),were also improved.Emissions of carbon monoxide(CO),hydrocarbons(HC),and smoke were also reduced,with the exception of nitrogen oxides(NO_(x)).The higher injection pressure(240 bar)had a positive effect on the operating characteristics.At an injection pressure of 240 bar,for KSOB20+15 L/min HCNG,the highest BTE and the lowest BSFC were found to be 32.09%and 0.227 kg/kWh,respectively.Also,the CP and NHRR were 69.34 bar and 66.04 J/°.CO,HC,and smoke levels were finally reduced to 0.013%,47×10^(-6)and 9%,respectively,with NO_(x)levels at 1623×10^(-6).For optimum results in terms of engine characteristics,the fuel combination KSOBD20+15 L/min HCNG at FIP 240 bar is recommended. 展开更多
关键词 BIODIESEL compressed natural gas Injection pressure EMISSION Cylinder pressure Brake thermal efficiency
原文传递
Gaseous emissions from compressed natural gas buses in urban road and highway tests in China 被引量:2
3
作者 Tingting Yue Fahe Chai +5 位作者 Jingnan Hu Ming Jia Xiaofeng Bao Zhenhua Li Liqang He Lei Zu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第10期193-199,共7页
The natural gas vehicle market is rapidly developing throughout the world, and the majority of such vehicles operate on compressed natural gas (CNG). However, most studies on the emission characteristics of CNG vehi... The natural gas vehicle market is rapidly developing throughout the world, and the majority of such vehicles operate on compressed natural gas (CNG). However, most studies on the emission characteristics of CNG vehicles rely on laboratory chassis dynamometer measurements, which do not accurately represent actual road driving conditions. To further investigate the emission characteristics of CNG vehicles, two CNG city buses and two CNG coaches were tested on public urban roads and highway sections. Our results show that when speeds of 0-10 km/hr were increased to 10-20 km/hr, the CO2, CO, nitrogen oxide (NOx), and total hydrocarbon (THC) emission factors decreased by (71.6 ± 4.3)%, (65.6 ± 9.5)%, (64.9± 9.2)% and (67.8 ± 0.3)%, respectively. In this study, The Beijing city buses with stricter emission standards (Euro IV) did not have lower emission factors than the Chongqing coaches with Euro II emission standards. Both the higher emission factors at 0-10 km/hr speeds and the higher percentage of driving in the low-speed regime during the entire road cycle may have contributed to the higher CO2 and CO emission factors of these city buses. Additionally, compared with the emission factors produced in the urban road tests, the CO emission factors of the CNG buses in highway tests decreased the most (by 83.2%), followed by the THC emission factors, which decreased by 67.1%. 展开更多
关键词 compressed natural gas vehiclesEmission factorsRoad testsHighway
原文传递
Polycyclic Aromatic Hydrocarbons in Water: A Review of the Sources, Properties, Exposure Pathways, Bionetwork and Strategies for Remediation
4
作者 I. O. Alaekwe O. Abba 《Journal of Geoscience and Environment Protection》 2022年第8期137-144,共8页
Polycyclic aromatic hydrocarbons (PAHs) are by-products arising from incomplete combustion. These organic chemicals substances are found almost everywhere and pose a risk to human health because of their potentially h... Polycyclic aromatic hydrocarbons (PAHs) are by-products arising from incomplete combustion. These organic chemicals substances are found almost everywhere and pose a risk to human health because of their potentially hazardous nature and bioavailability in the environment as determined by several regulatory agencies such as US Environmental Protection Agency (US-EPA), US Department of Health and Human Services (DHHS), International Agency for Research on Cancer (IARC) and the National Agency for Food and Drug Administration and Control (NAFDAC). The paper is aimed at studying polycyclic aromatic hydrocarbons in water. The possible sources, chemistry, risk and remediation strategies for polycyclic aromatic hydrocarbons in water have been considered. Studies have shown that exposure to PAHs at levels above the maximum contaminant level for relatively short periods will cause damage to the red blood cells leading to anaemia;suppressed immune system. Long-term exposure to Benzo(a)pyrene at levels above the maximum contaminant level has the potential to cause developmental and reproductive defects as well as cancer. US-EPA, IARC and DHHS has sets a maximum contaminant level (MCL) for benzo(a)pyrene, the most carcinogenic PAH, at 0.0002 mg/L, 0.0001 mg/L for benz(a)anthracene, 0.0002 mg/L for benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene. 0.0003 mg/L and 0.0004 mg/L have been set for dibenz(a,h)anthracene and indeno (1,2,3-c,d)pyrene respectively. Sustained barn on smoking in public places and burning of word, use of concretes in road construction as against the traditional surfacing of roads using coal tar as well as cars running on compressed natural gas (CNG) or liquefied petroleum gas (LPG) can form part of the preventive strategies. 展开更多
关键词 Aromatic Hydrocarbon Bionetwork REMEDIATION compressed natural gas Environmental Protection
下载PDF
Numerical study of CNG engine combustion using CFD with detailed chemical kinetics
5
作者 张欣 王玉君 +1 位作者 许健 黄利 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期54-59,共6页
A three dimensional model which considers the effects of turbulence and detailed chemi cal kinetics is built to simulate the combustion process of engine fueled by compressed nature gas (CNG). The model is accompli... A three dimensional model which considers the effects of turbulence and detailed chemi cal kinetics is built to simulate the combustion process of engine fueled by compressed nature gas (CNG). The model is accomplished by integrating CFD software KIVA3V and chemical kinetic soft- ware CHEMKINII. Meanwhile, a turbulence combustion model which is suitable for describing the reaction rate under the coupled simulation is developed to balance the effects of turbulence and de tailed chemical kinetics. To reduce the computation time, subsequent development of the simulation code is realized, which enables the simulation code to have the function of parallel computing and run on parallel computing facility based on message passing interface (MPI). The coupled software is used to simulate the combustion process of spark ignition CNG engine. The results show that sim ulation data have a good consistency with experimental results and parallel computing has good effi ciency and accelerate ratio. 展开更多
关键词 compressed nature gas (CNG) SI engine detailed chemical kinetics parallel computa-tion
下载PDF
SI Engine Fueled with Gasoline, CNG and CNG-HHO Blend: Comparative Evaluation of Performance, Emission and Lubrication Oil Deterioration
6
作者 USMAN Muhammad HAYAT Nasir BHUTTA Muhammad Mahmood Aslam 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1199-1211,共13页
Hydroxy gas (HHO) is one of the potential alternative fuels for spark ignition (SI) engine,notably due to simultaneous increase in engine performance and reduction in exhaust emissions.However,impact of HHO gas on lub... Hydroxy gas (HHO) is one of the potential alternative fuels for spark ignition (SI) engine,notably due to simultaneous increase in engine performance and reduction in exhaust emissions.However,impact of HHO gas on lubrication oil for longer periods of engine operation has not yet been studied.Current study focuses on investigation of the effect of gasoline,CNG and CNG-HHO blend on lubrication oil deterioration along with engine performance and emissions in SI engine.HHO unit produces HHO gas at 4.72 L/min by using 6 g/L of KOH in the aqueous solution.CNG was supplied to the test engine at a pressure of 0.11 MPa using an electronically controlled solenoid valve.Engine tests were carried out at different speeds at 80%open throttle condition and various performance parameters such as brake power (BP),brake specific fuel consumption(BSFC),brake thermal efficiency (BTE),exhaust gas temperature and exhaust emissions (HC,CO_(2),CO and NO_(x))were investigated.In addition,various lubrication oil samples were extracted over 120 h of engine running while topping for drain out volume and samples were analyzed as per ASTM standards.CNG-HHO blend exhibited better performance i.e.,15.4%increase in average BP in comparison to CNG,however,15.1%decrease was observed when compared to gasoline.CNG-HHO outperformed gasoline and CNG in the case of HC,CO_(2),CO and brake specific fuel consumption (31.1%decrease in comparison to gasoline).On the other hand,CNG-HHO produced higher average NO_(x) (12.9%) when compared to CNG only.Furthermore,lubrication oil condition(kinematic viscosity,water contents,flash point and total base number (TBN)),wear debris (Iron (Fe),Aluminum(Al),Copper (Cu),Chromium (Cr)) and additives depletion (Zinc (Zn),Calcium (Ca)) presented a significant degradation in the case of CNG-HHO blend as compared to gasoline and CNG.Lubrication oil analyses illustrated 19.6%,12.8%and 14.2%decrease in average viscosity,flash point and TBN for CNG-HHO blend respectively.However,average water contents,Fe,Al and Cu mass concentration appeared 2.7%,25×10^(-6),19×10^(-6),and 22×10^(-6) in lubrication oil for CNG-HHO respectively. 展开更多
关键词 spark ignition engine compressed natural gas hydrogen lubrication oil deterioration EMISSION
原文传递
Catalytic performance of a Pt-Rh/CeO_2-ZrO_2-La_2O_3-Nd_2O_3 three-way compress nature gas catalyst prepared by a modified double-solvent method 被引量:6
7
作者 陈建军 胡伟 +5 位作者 黄福进 李广霞 袁山东 龚茂初 钟琳 陈耀强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第9期857-866,共10页
A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respec... A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method. 展开更多
关键词 three-way catalyst compress natural gas CH_4 conversion modified double-solvent method CeO_2-ZrO_2-La_2O_3-Nd_2O_3 rare earths
原文传递
Network Modeling and Operation Optimization of Electricity-HCNG-Integrated Energy System
8
作者 Yue Qiu Suyang Zhou +5 位作者 Wei Gu Yuping Lu Xiao-Ping Zhang Gaoyan Han Kang Zhang Hongkun Lyu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第4期1251-1265,共15页
Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicat... Hydrogen-enriched compressed natural gas(HCNG)has great potential for renewable energy and hydrogen utilization.However,injecting hydrogen into the natural gas network will change original fluid dynamics and complicate compressed gas's physical properties,threatening operational safety of the electricity-HCNG-integrated energy system(E-HCNG-IES).To resolve such problem,this paper investigates effect of HCNG on gas network dynamics and presents an improved HCNG network model,which embodies the influence of blending hydrogen on the pressure drop equation and line pack equation.In addition,an optimal dispatch model for the E-HCNG-IES,considering the“production-storage-blending-transportation-utilization”link of the HCNG supply chain,is also proposed.The dispatch model is converted into a mixed-integer second-order conic programming(MISOCP)problem using the second-order cone(SOC)relaxation and piecewise linearization techniques.An iterative algorithm is proposed based on the convex-concave procedure and bound-tightening method to obtain a tight solution.Finally,the proposed methodology is evaluated through two E-HCNGIES numerical testbeds with different hydrogen volume fractions.Detailed operation analysis reveals that E-HCNG-IES can benefit from economic and environmental improvement with increased hydrogen volume fraction,despite declining energy delivery capacityand line pack flexibility. 展开更多
关键词 Electricity-HCNG-integrated energy system(E-HCNG-IES) hydrogen-enriched compressed natural gas(HCNG) improved HCNG network model optimal dispatch.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部