期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Off-Grid Compressed Channel Estimation with Parallel Interference Cancellation for Millimeter Wave Massive MIMO
1
作者 Liu Jinru Tian Yongqing +1 位作者 Liu Danpu Zhang Zhilong 《China Communications》 SCIE CSCD 2024年第3期51-65,共15页
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa... Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths. 展开更多
关键词 channel estimation compressed sensing inter-path interference millimeter wave massive MIMO OFF-GRID parallel interference cancellation
下载PDF
Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution
2
作者 蓝若明 刘雪峰 +1 位作者 李天平 白成杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期298-304,共7页
We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement ti... We propose a fast,adaptive multiscale resolution spectral measurement method based on compressed sensing.The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75%compared to a global high-resolution measurement.Mimicking the characteristics of the human retina system,the resolution distribution follows the principle of gradually decreasing.The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user.The system was tested by measuring single and dual spectral peaks,and the results of spectral peaks are consistent with those of global high-resolution measurements. 展开更多
关键词 SPECTROMETER compressed sensing adaptive gradient multiscale resolution fast measurement
下载PDF
Color Image Compression and Encryption Algorithm Based on 2D Compressed Sensing and Hyperchaotic System
3
作者 Zhiqing Dong Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2024年第2期1977-1993,共17页
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image... With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective. 展开更多
关键词 Image encryption image compression hyperchaotic system compressed sensing
下载PDF
Optimized Three-Dimensional Cardiovascular Magnetic Resonance Whole Heart Imaging Utilizing Non-Selective Excitation and Compressed Sensing in Children and Adults with Congenital Heart Disease
4
作者 Ingo Paetsch Roman Gebauer +7 位作者 Christian Paech Frank-Thomas Riede Sabrina Oebel Andreas Bollmann Christian Stehning Jouke Smink Ingo Daehnert Cosima Jahnke 《Congenital Heart Disease》 SCIE 2023年第3期279-294,共16页
Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicabil... Background:In congenital heart disease(CHD)patients,detailed three-dimensional anatomy depiction plays a pivotal role for diagnosis and therapeutical decision making.Hence,the present study investigated the applicability of an advanced cardiovascular magnetic resonance(CMR)whole heart imaging approach utilizing nonselective excitation and compressed sensing for anatomical assessment and interventional guidance of CHD patients in comparison to conventional dynamic CMR angiography.Methods:86 consecutive pediatric patients and adults with congenital heart disease(age,1 to 74 years;mean,35 years)underwent CMR imaging including a freebreathing,ECG-triggered 3D nonselective SSFP whole heart acquisition using compressed SENSE(nsWHcs).Anatomical assessability and signal intensity ratio(SIR)measurements were compared with conventional dynamic 3D-/4D-MR angiography.Results:The most frequent diagnoses were partial anomalous pulmonary venous drainage(17/86,20%),transposition of the great arteries(15/86,17%),tetralogy of Fallot(12/86,14%),and a single ventricle(7/86,8%).Image quality of nsWHcs was rated as excellent/good in 98%of patients.nsWHcs resulted in a reliable depiction of all large thoracic vessels(anatomic assessability,99%–100%)and the proximal segments of coronary arteries and coronary sinus(>90%).nsWHcs achieved a homogenously distributed SIR in all cardiac cavities and thoracic vessels without a significant difference between pulmonary and systemic circulation(10.9±3.5 and 10.6±3.4;p=0.15),while 3D angiography showed significantly increased SIR for targeted vs.non-targeted circulation(PA-angiography,15.2±8.1 vs.5.8±3.6,p<0.001;PV-angiography,7.0±3.9 vs.17.3±6.8,p<0.001).Conclusions:The proposed nsWHcs imaging approach provided a consistently high image quality and a homogeneous signal intensity distribution within the pulmonary and systemic circulation in pediatric patients and adults with a wide spectrum of congenital heart diseases.nsWHcs enabled detailed anatomical assessment and three-dimensional reconstruction of all cardiac cavities and large thoracic vessels and can be regarded particularly useful for preprocedural planning and interventional guidance in CHD patients. 展开更多
关键词 Cardiovascular magnetic resonance imaging congenital heart disease whole heart imaging nonselective SSFP compressed sense MR angiography
下载PDF
Regularization by Multiple Dual Frames for Compressed Sensing Magnetic Resonance Imaging With Convergence Analysis 被引量:1
5
作者 Baoshun Shi Kexun Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第11期2136-2153,共18页
Plug-and-play priors are popular for solving illposed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-andplay priors relies on the assumption of bo... Plug-and-play priors are popular for solving illposed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-andplay priors relies on the assumption of bounded denoisers. However, the bounded properties of existing plugged Gaussian denoisers have not been proven explicitly. To bridge this gap, we detail a novel provable bounded denoiser termed as BMDual,which combines a trainable denoiser using dual tight frames and the well-known block-matching and 3D filtering(BM3D)denoiser. We incorporate multiple dual frames utilized by BMDual into a novel regularization model induced by a solver. The proposed regularization model is utilized for compressed sensing magnetic resonance imaging(CSMRI). We theoretically show the bound of the BMDual denoiser, the bounded gradient of the CSMRI data-fidelity function, and further demonstrate that the proposed CSMRI algorithm converges. Experimental results also demonstrate that the proposed algorithm has a good convergence behavior, and show the effectiveness of the proposed algorithm. 展开更多
关键词 Bounded denoiser compressed sensing magnetic resonance imaging(CSMRI) dual frames plug-and-play priors REGULARIZATION
下载PDF
Airborne sparse flight array SAR 3D imaging based on compressed sensing in frequency domain 被引量:1
6
作者 TIAN He DONG Chunzhu +1 位作者 YIN Hongcheng YUAN Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期56-67,共12页
In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used... In airborne array synthetic aperture radar(SAR), the three-dimensional(3D) imaging performance and cross-track resolution depends on the length of the equivalent array. In this paper, Barker sequence criterion is used for sparse flight sampling of airborne array SAR, in order to obtain high cross-track resolution in as few times of flights as possible. Under each flight, the imaging algorithm of back projection(BP) and the data extraction method based on modified uniformly redundant arrays(MURAs) are utilized to obtain complex 3D image pairs. To solve the side-lobe noise in images, the interferometry between each image pair is implemented, and compressed sensing(CS) reconstruction is adopted in the frequency domain. Furthermore, to restore the geometrical relationship between each flight, the phase information corresponding to negative MURA is compensated on each single-pass image reconstructed by CS. Finally,by coherent accumulation of each complex image, the high resolution in cross-track direction is obtained. Simulations and experiments in X-band verify the availability. 展开更多
关键词 three-dimensional(3D)imaging synthetic aperture radar(SAR) sparse flight INTERFEROMETRY compressed sensing(CS)
下载PDF
Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
7
作者 都洋 隆国强 +2 位作者 蒋东华 柴秀丽 韩俊鹤 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期426-445,共20页
Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak corre... Some existing image encryption schemes use simple low-dimensional chaotic systems, which makes the algorithms insecure and vulnerable to brute force attacks and cracking. Some algorithms have issues such as weak correlation with plaintext images, poor image reconstruction quality, and low efficiency in transmission and storage. To solve these issues,this paper proposes an optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system(4D MHS) and compressed sensing(CS). Firstly, this paper proposes a new 4D MHS, which has larger key space, richer dynamic behavior, and more complex hyperchaotic characteristics. The introduction of CS can reduce the image size and the transmission burden of hardware devices. The introduction of double random phase encoding(DRPE) enables this algorithm has the ability of parallel data processing and multi-dimensional coding space, and the hyperchaotic characteristics of 4D MHS make up for the nonlinear deficiency of DRPE. Secondly, a construction method of the deterministic chaotic measurement matrix(DCMM) is proposed. Using DCMM can not only save a lot of transmission bandwidth and storage space, but also ensure good quality of reconstructed images. Thirdly, the confusion method and diffusion method proposed are related to plaintext images, which require both four hyperchaotic sequences of 4D MHS and row and column keys based on plaintext images. The generation process of hyperchaotic sequences is closely related to the hash value of plaintext images. Therefore, this algorithm has high sensitivity to plaintext images. The experimental testing and comparative analysis results show that proposed algorithm has good security and effectiveness. 展开更多
关键词 MEMRISTOR hyperchaotic system compressed sensing fractional Fourier transform optical image encryption
下载PDF
A High-Quality Adaptive Video Reconstruction Optimization Method Based on Compressed Sensing
8
作者 Yanjun Zhang Yongqiang He +3 位作者 Jingbo Zhang Yaru Zhao Zhihua Cui Wensheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期363-383,共21页
The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the mult... The video compression sensing method based onmulti hypothesis has attracted extensive attention in the research of video codec with limited resources.However,the formation of high-quality prediction blocks in the multi hypothesis prediction stage is a challenging task.To resolve this problem,this paper constructs a novel compressed sensing-based high-quality adaptive video reconstruction optimizationmethod.Itmainly includes the optimization of prediction blocks(OPBS),the selection of searchwindows and the use of neighborhood information.Specifically,the OPBS consists of two parts:the selection of blocks and the optimization of prediction blocks.We combine the high-quality optimization reconstruction of foreground block with the residual reconstruction of the background block to improve the overall reconstruction effect of the video sequence.In addition,most of the existing methods based on predictive residual reconstruction ignore the impact of search windows and reference frames on performance.Therefore,Block-level search window(BSW)is constructed to cover the position of the optimal hypothesis block as much as possible.To maximize the availability of reference frames,Nearby reference frame information(NRFI)is designed to reconstruct the current block.The proposed method effectively suppresses the influence of the fluctuation of the prediction block on reconstruction and improves the reconstruction performance.Experimental results showthat the proposed compressed sensing-based high-quality adaptive video reconstruction optimization method significantly improves the reconstruction performance in both objective and supervisor quality. 展开更多
关键词 compressed sensing OPBS block-level search window nearby reference frame information evolutionary algorithm
下载PDF
Reduced Imaging Time and Improved Image Quality of 3D Isotropic T2-Weighted Magnetic Resonance Imaging with Compressed Sensing for the Female Pelvis
9
作者 Hao Mei Feng Xiao Ming Deng 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期579-585,共7页
This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D... This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images. 展开更多
关键词 compressed sensing sampling perfection with application-oriented contrasts(SPACE)using variable flip angle evolutions three-dimensional(3D)imaging magnetic resonance imaging(MRI) PELVIS
下载PDF
Research on Asymmetric Fault Location of Wind Farm Collection System Based on Compressed Sensing
10
作者 Huanan Yu Gang Han +1 位作者 Hansong Luo He Wang 《Energy Engineering》 EI 2023年第9期2029-2057,共29页
Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location m... Aiming at the problem that most of the cables in the power collection systemof offshore wind farms are buried deep in the seabed,whichmakes it difficult to detect faults,this paper proposes a two-step fault location method based on compressed sensing and ranging equation.The first step is to determine the fault zone through compressed sensing,and improve the datameasurement,dictionary design and algorithmreconstruction:Firstly,the phase-locked loop trigonometric functionmethod is used to suppress the spike phenomenon when extracting the fault voltage,so that the extracted voltage valuewillnot have a large error due to the voltage fluctuation.Secondly,theλ-NIM dictionary is designed by using the node impedancematrix and the fault location coefficient to further reduce the influence of pseudo-fault points.Finally,the CoSaMP algorithmis improved with the generalized Jaccard coefficient to improve the reconstruction accuracy.The second step is to use the ranging equation to accurately locate the asymmetric fault of the wind farm collection system on the basis of determining the fault interval.The simulation results show that the proposedmethod ismore accurate than the compressedsensingmethod andimpedancemethod in fault section location and fault location accuracy,the relative error is reduced from 0.75%to 0.4%,and has a certain anti-noise ability. 展开更多
关键词 Offshore wind farm convergence system compression sensing ranging equation fault location
下载PDF
A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing
11
作者 Guangfei Jia Fengwei Guo +2 位作者 Zhe Wu Suxiao Cui Jiajun Yang 《Structural Durability & Health Monitoring》 EI 2023年第5期383-405,共23页
With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the ac... With the development of multi-signal monitoring technology,the research on multiple signal analysis and processing has become a hot subject.Mechanical equipment often works under variable working conditions,and the acquired vibration signals are often non-stationary and nonlinear,which are difficult to be processed by traditional analysis methods.In order to solve the noise reduction problem of multiple signals under variable speed,a COT-DCS method combining the Computed Order Tracking(COT)based on Chirplet Path Pursuit(CPP)and Distributed Compressed Sensing(DCS)is proposed.Firstly,the instantaneous frequency(IF)is extracted by CPP,and the speed is obtained by fitting.Then,the speed is used for equal angle sampling of time-domain signals,and angle-domain signals are obtained by COT without a tachometer to eliminate the nonstationarity,and the angledomain signals are compressed and reconstructed by DCS to achieve noise reduction of multiple signals.The accuracy of the CPP method is verified by simulated,experimental signals and compared with some existing IF extraction methods.The COT method also shows good signal stabilization ability through simulation and experiment.Finally,combined with the comparative test of the other two algorithms and four noise reduction effect indicators,the COT-DCS based on the CPP method combines the advantages of the two algorithms and has better noise reduction effect and stability.It is shown that this method is an effective multi-signal noise reduction method. 展开更多
关键词 Gearbox fault diagnosis chirplet path pursuit computed order tracking distributed compressed sensing
下载PDF
Compressed sensing estimation of sparse underwater acoustic channels with a large time delay spread 被引量:4
12
作者 伍飞云 周跃海 +1 位作者 童峰 方世良 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期271-277,共7页
The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will s... The estimation of sparse underwater acoustic channels with a large time delay spread is investigated under the framework of compressed sensing. For these types of channels, the excessively long impulse response will significantly degrade the convergence rate and tracking capability of the traditional estimation algorithms such as least squares (LS), while excluding the use of the delay-Doppler spread function due to huge computational complexity. By constructing a Toeplitz matrix with a training sequence as the measurement matrix, the estimation problem of long sparse acoustic channels is formulated into a compressed sensing problem to facilitate the efficient exploitation of sparsity. Furthermore, unlike the traditional l1 norm or exponent-based approximation l0 norm sparse recovery strategy, a novel variant of approximate l0 norm called AL0 is proposed, minimization of which leads to the derivation of a hybrid approach by iteratively projecting the steepest descent solution to the feasible set. Numerical simulations as well as sea trial experiments are compared and analyzed to demonstrate the superior performance of the proposed algorithm. 展开更多
关键词 norm constraint sparse underwater acousticchannel compressed sensing
下载PDF
Sparse Modal Decomposition Method Addressing Underdetermined Vortex-Induced Vibration Reconstruction Problem for Marine Risers 被引量:1
13
作者 DU Zun-feng ZHU Hai-ming YU Jian-xing 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期285-296,共12页
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa... When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring. 展开更多
关键词 motion reconstruction vortex-induced vibration(VIV) marine riser modal decomposition method compressed sensing
下载PDF
Dynamics analysis and cryptographic implementation of a fractional-order memristive cellular neural network model
14
作者 周新卫 蒋东华 +4 位作者 Jean De Dieu Nkapkop Musheer Ahmad Jules Tagne Fossi Nestor Tsafack 吴建华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期418-433,共16页
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop... Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this paper.Here,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its performance.Then,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation platforms.Subsequently,it is used toward secure communication application scenarios.Taking it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)model.Eventually,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance. 展开更多
关键词 cellular neural network MEMRISTOR hardware circuit compressive sensing privacy data protection
下载PDF
Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
15
作者 王一铭 黄树锋 +2 位作者 陈煌 杨健 蔡述庭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期287-302,共16页
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete... A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality. 展开更多
关键词 visual security image encryption parallel compressive sensing edge detection embedding
下载PDF
Cluster-Based Massive Access for Massive MIMO Systems
16
作者 Shiyu Liang Wei Chen +2 位作者 Zhongwen Sun Ao Chen Bo Ai 《China Communications》 SCIE CSCD 2024年第1期24-33,共10页
Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multipl... Massive machine type communication aims to support the connection of massive devices,which is still an important scenario in 6G.In this paper,a novel cluster-based massive access method is proposed for massive multiple input multiple output systems.By exploiting the angular domain characteristics,devices are separated into multiple clusters with a learned cluster-specific dictionary,which enhances the identification of active devices.For detected active devices whose data recovery fails,power domain nonorthogonal multiple access with successive interference cancellation is employed to recover their data via re-transmission.Simulation results show that the proposed scheme and algorithm achieve improved performance on active user detection and data recovery. 展开更多
关键词 compressive sensing dictionary learning multiuser detection random access
下载PDF
Design Framework of Unsourced Multiple Access for 6G Massive IoT
17
作者 Chunlin Yan Siying Lyu +2 位作者 Sen Wang Yuhong Huang Xiaodong Xu 《China Communications》 SCIE CSCD 2024年第1期1-12,共12页
In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s... In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing. 展开更多
关键词 channel coding compressed sensing massive Internet-of-Things(IoT) sparse interleaverdivision multiple access(SIDMA) the sixth generation(6G)mobile communications unsourced multiple access
下载PDF
Chaotic CS Encryption:An Efficient Image Encryption Algorithm Based on Chebyshev Chaotic System and Compressive Sensing
18
作者 Mingliang Sun Jie Yuan +1 位作者 Xiaoyong Li Dongxiao Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2625-2646,共22页
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori... Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors. 展开更多
关键词 Image encryption chaotic system compressive sensing arnold transform
下载PDF
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l_(1)-norm
19
作者 YANG Zeqi LIU Yiheng +4 位作者 ZHANG Hua MA Shuai CHANG Kai LIU Ning LYU Xiaode 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期532-540,F0002,共10页
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc... With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment. 展开更多
关键词 direction of arrival(DOA) compressed sensing(CS) Krylov subspace l_(1)-norm dimensionality reduction
下载PDF
A Disturbance Localization Method for Power System Based on Group Sparse Representation and Entropy Weight Method
20
作者 Zeyi Wang Mingxi Jiao +4 位作者 Daliang Wang Minxu Liu Minglei Jiang He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第8期2275-2291,共17页
This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sp... This paper addresses the problem of complex and challenging disturbance localization in the current power system operation environment by proposing a disturbance localization method for power systems based on group sparse representation and entropy weight method.Three different electrical quantities are selected as observations in the compressed sensing algorithm.The entropy weighting method is employed to calculate the weights of different observations based on their relative disturbance levels.Subsequently,by leveraging the topological information of the power system and pre-designing an overcomplete dictionary of disturbances based on the corresponding system parameter variations caused by disturbances,an improved Joint Generalized Orthogonal Matching Pursuit(J-GOMP)algorithm is utilized for reconstruction.The reconstructed sparse vectors are divided into three parts.If at least two parts have consistent node identifiers,the node is identified as the disturbance node.If the node identifiers in all three parts are inconsistent,further analysis is conducted considering the weights to determine the disturbance node.Simulation results based on the IEEE 39-bus system model demonstrate that the proposed method,utilizing electrical quantity information from only 8 measurement points,effectively locates disturbance positions and is applicable to various disturbance types with strong noise resistance. 展开更多
关键词 Disturbance location compressed sensing group sparse representation entropy power method GOMP algorithm
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部