期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
A discrete Boltzmann model with symmetric velocity discretization for compressible flow
1
作者 林传栋 孙笑朋 +2 位作者 苏咸利 赖惠林 方晓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期374-382,共9页
A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-... A discrete Boltzmann model(DBM) with symmetric velocity discretization is constructed for compressible systems with an adjustable specific heat ratio in the external force field. The proposed two-dimensional(2D) nine-velocity scheme has better spatial symmetry and numerical accuracy than the discretized velocity model in literature [Acta Aerodyn. Sin.40 98108(2022)] and owns higher computational efficiency than the one in literature [Phys. Rev. E 99 012142(2019)].In addition, the matrix inversion method is adopted to calculate the discrete equilibrium distribution function and force term, both of which satisfy nine independent kinetic moment relations. Moreover, the DBM could be used to study a few thermodynamic nonequilibrium effects beyond the Euler equations that are recovered from the kinetic model in the hydrodynamic limit via the Chapman–Enskog expansion. Finally, the present method is verified through typical numerical simulations, including the free-falling process, Sod’s shock tube, sound wave, compressible Rayleigh–Taylor instability,and translational motion of a 2D fluid system. 展开更多
关键词 discrete Boltzmann method compressible flow nonequilibrium effect kinetic method
下载PDF
Gas kinetic flux solver based finite volume weighted essentially non-oscillatory scheme for inviscid compressible flows
2
作者 Lan JIANG Jie WU +1 位作者 Liming YANG Hao DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期961-980,共20页
A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined wit... A high-order gas kinetic flux solver(GKFS)is presented for simulating inviscid compressible flows.The weighted essentially non-oscillatory(WENO)scheme on a uniform mesh in the finite volume formulation is combined with the circular function-based GKFS(C-GKFS)to capture more details of the flow fields with fewer grids.Different from most of the current GKFSs,which are constructed based on the Maxwellian distribution function or its equivalent form,the C-GKFS simplifies the Maxwellian distribution function into the circular function,which ensures that the Euler or Navier-Stokes equations can be recovered correctly.This improves the efficiency of the GKFS and reduces its complexity to facilitate the practical application of engineering.Several benchmark cases are simulated,and good agreement can be obtained in comparison with the references,which demonstrates that the high-order C-GKFS can achieve the desired accuracy. 展开更多
关键词 circular function-based gas kinetic flux solver(C-GKFS) weighted essentially non-oscillatory(WENO)scheme compressible flow finite volume method
下载PDF
COMPRESSIBLE FLOW SIMULATION AROUND AIRFOIL BASED ON LATTICE BOLTZMANN METHOD
3
作者 钟诚文 李凯 +2 位作者 孙建红 卓从山 解建飞 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期206-211,共6页
The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, ... The flow around airfoil NACA0012 enwrapped by the body-fitted grid is simulated by a coupled doubledistribution-function (DDF) lattice Boltzmann method (LBM) for the compressible Navier-Stokes equations. Firstly, the method is tested by simulating the low Reynolds number flow at Ma =0. 5,a=0. 0, Re=5 000. Then the simulation of flow around the airfoil is carried out at Ma:0. 5, 0. 85, 1.2; a=-0.05, 1.0, 0.0, respectively. And a better result is obtained by using a local refined grid. It reduces the error produced by the grid at Ma=0. 85. Though the inviscid boundary condition is used to avoid the problem of flow transition to turbulence at high Reynolds numbers, the pressure distribution obtained by the simulation agrees well with that of the experimental results. Thus, it proves the reliability of the method and shows its potential for the compressible flow simulation. The suecessful application to the flow around airfoil lays a foundation of the numerical simulation of turbulence. 展开更多
关键词 compressible flow computational fluid dynamics lattice Boltzmann method AIRFOIL body-fitted grid
下载PDF
Numerical simulation of the dimensional transformation of atomization in a supersonic aerodynamic atomization dust-removing nozzle based on transonic speed compressible flow 被引量:8
4
作者 Tian Zhang Deji Jing +3 位作者 Shaocheng Ge Jiren Wang Xiangxi Meng ShuaiShuai Ren 《International Journal of Coal Science & Technology》 EI 2020年第3期597-610,共14页
To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle eff... To simulate the transonic atomization jet process in Laval nozzles,to test the law of droplet atomization and distribution,to find a method of supersonic atomization for dust-removing nozzles,and to improve nozzle efficiency,the finite element method has been used in this study based on the COMSOL computational fluid dynamics module.The study results showed that the process cannot be realized alone under the two-dimensional axisymmetric,three-dimensional and three-dimensional symmetric models,but it can be calculated with the transformation dimension method,which uses the parameter equations generated from the two-dimensional axisymmetric flow field data of the three-dimensional model.The visualization of this complex process,which is difficult to measure and analyze experimentally,was realized in this study.The physical process,macro phenomena and particle distribution of supersonic atomization are analyzed in combination with this simulation.The rationality of the simulation was verified by experiments.A new method for the study of the atomization process and the exploration of its mechanism in a compressible transonic speed flow field based on the Laval nozzle has been provided,and a numerical platform for the study of supersonic atomization dust removal has been established. 展开更多
关键词 Aerodynamic atomization Dust-removing Laval nozzle compressible flow field Transonic speed Dimension transform
下载PDF
A GHOST FLUID BASED FRONT TRACKING METHOD FOR MULTIMEDIUM COMPRESSIBLE FLOWS 被引量:3
5
作者 王东红 赵宁 +1 位作者 胡偶 刘剑明 《Acta Mathematica Scientia》 SCIE CSCD 2009年第6期1629-1646,共18页
Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have on... Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given. 展开更多
关键词 front tracking method ghost fluid method multimedium compressible flow Riemann problem
下载PDF
Characteristics of compressible flow of supercritical kerosene 被引量:2
6
作者 Feng-Quan Zhong Xue-Jun Fan +2 位作者 Jing Wang Gong Yu Jian-Guo Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期8-13,共6页
In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10... In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10- species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly dif- ferent from those of ideal gases, A two-stage fuel heating and delivery system is used to heat the kerosene up to a tem- perature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation. 展开更多
关键词 Supercritical kerosene - compressible flow Laval nozzle Isentropic process
下载PDF
Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows 被引量:1
7
作者 Shu-Xia Zhao Zhao Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期348-360,共13页
In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma propertie... In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed. 展开更多
关键词 gas flow inductively coupled plasma compressible flow fluid model
下载PDF
A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows 被引量:1
8
作者 李凯 钟诚文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期262-269,共8页
This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiplerelaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, where... This paper presents a coupling compressible model of the lattice Boltzmann method. In this model, the multiplerelaxation-time lattice Boltzmann scheme is used for the evolution of density distribution functions, whereas the modified single-relaxation-time (SRT) lattice Boltzmann scheme is applied for the evolution of potential energy distribution functions. The governing equations are discretized with the third-order Monotone Upwind Schemes for scalar conservation laws finite volume scheme. The choice of relaxation coefficients is discussed simply. Through the numerical simulations, it is found that compressible flows with strong shocks can be well simulated by present model. The numerical results agree well with the reference results and are better than that of the SRT version. 展开更多
关键词 lattice Boltzmann method multi-relaxation-time compressible flow finite volume method
下载PDF
Three-Dimensional Lattice Boltzmann Model for High-Speed Compressible Flows 被引量:1
9
作者 陈锋 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第12期1121-1128,共8页
A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (200... A highly efficient three-dimensional (31)) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves. 展开更多
关键词 lattice Boltzmann method compressible flows Euler equations von Neumann stability analysis
下载PDF
ADAPTIVE DELAUNAY TRIANGULATION WITH MULTIDIMENSIONAL DISSIPATION SCHEME FOR HIGH-SPEED COMPRESSIBLE FLOW ANALYSIS 被引量:1
10
作者 P.Dechaumphai S.Phongthanapanich 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第10期1341-1356,共16页
Adaptive Delaunay triangulation is combined with the cell-centered upwinding algorithm to analyze inviscid high-speed compressible flow problems. The multidimensional dissipation scheme was developed and included in t... Adaptive Delaunay triangulation is combined with the cell-centered upwinding algorithm to analyze inviscid high-speed compressible flow problems. The multidimensional dissipation scheme was developed and included in the upwinding algorithm for unstructured triangular meshes to improve the computed shock wave resolution. The solution accuracy is further improved by coupling an error estimation procedure to a remeshing algorithm that generates small elements in regions with large change of solution gradients, and at the same time, larger elements in other regions. The proposed scheme is further extended to achieve higher-order spatial and temporal solution accuracy. Efficiency of the combined procedure is evaluated by analyzing supersonic shocks and shock propagation behaviors for both the steady and unsteady high-speed compressible flows. 展开更多
关键词 adaptive meth movement Delaunay triangulation cell-centered upwinding high-speed compressible flow
下载PDF
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow:Two-Dimensional Case 被引量:1
11
作者 GAN Yan-Biao XU Ai-Guo +3 位作者 ZHANG Guang-Cai ZHANG Ping ZHANG Lei LI Ying-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期201-210,共10页
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow... Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc. 展开更多
关键词 lattice Boltzmann method high-speed compressible flow von Neumann analysis
下载PDF
TWO PHASE COMPRESSIBLE FLOW IN POROUS MEDIA 被引量:1
12
作者 应隆安 《Acta Mathematica Scientia》 SCIE CSCD 2011年第6期2159-2168,共10页
We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of ... We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution. 展开更多
关键词 porous media two phase compressible flows initial-boundary value problem
下载PDF
Simulation of thermoacoustic waves by a pressure-based algorithm for compressible flows 被引量:2
13
作者 Wei Li Qi-Sheng Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期819-824,共6页
A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction ... A modified SIMPLEC method which can solve compressible flows at low Mach number is introduced and used to study thermoacoustic waves induced by a rapid change of temperature at a solid wall and alternating- direction flows generated by thermoacoustic effects in a ta- pered resonator. The results indicate that the algorithm adopted in this paper can be used for calculating com- pressible flows and thermoacoustic waves. It is found that the pressure and velocity in the resonator behave as stand- ing waves, and the tapered resonator can suppress high- frequency harmonic waves as observed in a cylindrical res- onator. 展开更多
关键词 compressible flow Thermoacoustic wave Resonator. SIMPLEC
下载PDF
Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations 被引量:2
14
作者 Ling Li Ming-Shun Yuan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期200-207,共8页
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on... In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack’s scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects. 展开更多
关键词 Wall turbulences · Large eddy simulation · Drag reduction · Hydrophobic wall · Weakly compressible flow
下载PDF
Flux Limiter Lattice Boltzmann for Compressible Flows
15
作者 陈峰 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第8期333-338,共6页
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limit... In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. 展开更多
关键词 lattice Boltzmann method flux limiter technique compressible flows multiple-relaxation-time Richtmyer-Meshkov instability
下载PDF
Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number
16
作者 甘延标 许爱国 +1 位作者 张广财 李英骏 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第9期490-498,共9页
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which... We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar Gross Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dlmenslonal FLiemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. 展开更多
关键词 lattice Boltzmann method flux limiter compressible flows Prandtl number
下载PDF
Shocklets in compressible flows
17
作者 袁湘江 田俊武 +1 位作者 沈清 李筠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第12期1453-1464,共12页
The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinu... The mechanism of shocklets is studied theoretically and numerically for the stationary fluid, uniform compressible flow, and boundary layer flow. The conditions that trigger shock waves for sound wave, weak discontinuity, and Tollmien-Schlichting (T-S) wave in compressible flows are investigated. The relations between the three types of waves and shocklets are further analyzed and discussed. Different stages of the shocklet formation process are simulated. The results show that the three waves in compressible flows will transfer to shocklets only when the initial disturbance amplitudes are greater than the certain threshold values. In compressible boundary layers, the shocklets evolved from T-S wave exist only in a finite region near the surface instead of the whole wavefront. 展开更多
关键词 SHOCKLET compressible flow boundary layer Tollmien-Schlichting (T-S)wave
下载PDF
A high-order scheme based on lattice Boltzmann flux solver for viscous compressible flow simulations
18
作者 Jian QIN Jie WU Chao MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第10期1601-1614,共14页
In this paper,a high-order scheme based on the lattice Boltzmann flux solver(LBFS)is proposed to simulate viscous compressible flows.The flux reconstruction(FR)approach is adopted to implement the spatial discretizati... In this paper,a high-order scheme based on the lattice Boltzmann flux solver(LBFS)is proposed to simulate viscous compressible flows.The flux reconstruction(FR)approach is adopted to implement the spatial discretization.The LBFS is employed to compute the inviscid flux by using the local reconstruction of the lattice Boltzmann equation solutions from macroscopic flow variables.Meanwhile,a switch function is used in LBFS to adjust the magnitude of the numerical viscosity.Thus,it is more beneficial to capture both strong shock waves and thin boundary layers.Moreover,the viscous flux is computed according to the local discontinuous Galerkin method.Some typical compressible viscous problems,including manufactured solution case,lid-driven cavity flow,supersonic flow around a cylinder and subsonic flow over a NACA0012 airfoil,are simulated to demonstrate the accuracy and robustness of the proposed FR-LBFS. 展开更多
关键词 high-order method flux reconstruction lattice Boltzmann flux solver(LBFS) viscous compressible flow
下载PDF
An h-Adaptivity DG Method on Locally Curved Tetrahedral Mesh for Solving Compressible Flows
19
作者 AN Wei HUANG Zenghui LYU Hongqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期702-712,共11页
For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions w... For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields. 展开更多
关键词 h-adaptivity discontinuous Galerkin(DG)method curved mesh tetrahedral mesh compressible flows
下载PDF
A new dynamic subgrid-scale model using artificial neural network for compressible flow
20
作者 Han Qi Xinliang Li +1 位作者 Ning Luo Changping Yu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第4期267-274,共8页
The subgrid-scale(SGS)kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies.In this paper,a new SGS eddy-visc... The subgrid-scale(SGS)kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies.In this paper,a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely,instead of using the SGS kinetic energy equation.Using the infinite series expansion and reserving the first term of the expanded term,we obtain an approximated SGS kinetic energy,which has a high correlation with the real SGS kinetic energy.Then,the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation.The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure.The new model is tested in the compressible turbulent channel flow.From the a posterior tests,we know that the new model can precisely predict the mean velocity,the Reynolds stress,the mean temperature and turbulence intensities,etc. 展开更多
关键词 Subgrid-scale kinetic energy Eddy-viscosity model compressible flow
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部