In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density...In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.展开更多
The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite...The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.展开更多
文摘In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.
基金supported in part by the National Science Foundationthe Office of Naval Research
文摘The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.