The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat l...The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.展开更多
The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popul...The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N · m to 22.439 N · m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.展开更多
For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. The...For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.展开更多
In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,whi...In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.展开更多
A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperature...Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperatures are very high for these esters. CR (compression ratio) is one of the parameter which influences the atomization and vaporization of fuel. It is also caused for improvement in the turbulence which leads to better combustion. In this work the single cylinder diesel engine was tested at different compression ratios i.e. 16.5:1, 17.5:1, 18.5:1, 19:1 with palm kernel methyl ester without modifications. On increasing compression ratio closeness of molecules of air increases and fuel is injected into that air caused for better combustion. The inbuilt oxygen of methyl or ethyl ester will participate in the combustion and causes for reduction of HC and CO. Better compression ratio for an engine with particular fuel provides satisfactory thermal efficiency and less environmental pollution. In the investigations, for palm kernel methyl ester, 18.5:1 compression ratio is preferable on single cylinder Dl-diesel engine.展开更多
A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel e...A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.展开更多
Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers ha...Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat–sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat–sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conductivity varies from 1.74 × 10^-9 m/s to 7.35 × 10^-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it increases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers.展开更多
This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank ...This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.展开更多
Sclerocarya birrea(Marula)seed oil was extracted and characterized for its physico-chemical properties and fatty acid compositions,respectively,by using standardized laboratory methods of the Association of Official a...Sclerocarya birrea(Marula)seed oil was extracted and characterized for its physico-chemical properties and fatty acid compositions,respectively,by using standardized laboratory methods of the Association of Official and Analytical Chemist(AOAC).The fuel and lubrication properties of marula oil were also determined by using the ASTM methods,and the oil was evaluated in terms of its antiwear,viscometrics,volatility,stability,environmental compatibility properties and energy content.It was found that the high percentage of mono-unsaturated oleic acid(73.6%)provided the oiliness that makes marula oil a natural alternative to genetically modify high oleic acid sunflower oil used in biodiesel production.The aggregate properties of seed oiliness as exemplified by the high oleic acid content,high saponification value(178.6 mg/KOH)and viscosity(41 mm2/s)makes marula oil to be prospective based oil for engine crank case biolubricants with antiwear and friction reduction properties.However,the higher oil viscosity exhibited by marula seed oil in comparison to diesel could pose some durability problems to compression ignition engines,when used directly as fuel.Nonetheless,the reduction of oil viscosity would be required by heating,blending with diesel fuel,or by transesterification to forestall the risk of engine failure resulting from the use of unmodified marula oil.The flash point of marula oil(235℃)is somewhat close to that of monograde SAE 40 mineral oil(240℃),and appreciably higher than that of diesel fuel(52℃).The high flash point makes the seed oil less flammable and ensures safer handling and transportation.While,the low pour point(-13.7℃)ensures the oil usability for engines at cold start and under low load conditions.The oxidation stability of marula oil is ascribed to the traces of natural antioxidants presented in the oil and improves the oil’s shelf life,notwithstanding the high peroxide value(4.58 mequiv/kg),and linolenic acid content(0.3%),which ought to have been the culprit for lipolytic hydrolysis and rancidity.Furthermore,marula seed oil is more biodegradable and environmentally friendly than oils derived from petroleum crude.The closely related cetane number(47.8)and heating values(38.2 mJ/kg)of marula oil to diesel fuel would undeniably sustain the combustion efficiency of diesel fuel and also supply a comparable engine performance output in compression ignition engines.The candidacy of marula seed oil,as a bioenergy resource for alternative fuel,fuel additives and lubricants,will no doubt expand the energy supply mix,conserve fossil fuel reserves and mitigate environmental contamination.展开更多
Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a filel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blend...Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a filel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is fotmd to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads tbr 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.展开更多
To reduce their fuel related logistic burden,North Atlantic Treaty Organization(NATO)Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment.To this end,F-34(the commercial equivalen...To reduce their fuel related logistic burden,North Atlantic Treaty Organization(NATO)Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment.To this end,F-34(the commercial equivalent is Jet A-1)is replacing distillate diesel fuel in many applications.However,tests conducted with this kerosene type on high frequency reciprocating rig showed that this type of fuel causes unacceptable wear.This excessive wear is caused by the poor lubricity of aviation fuel.In order to make this type of fuel compatible with direct injection compression engines,seven di-carboxylic acid esters have tested to improve the lubricity of kerosene.Tribological results showed that all esters tested in this series of experiments seem to be suitable for increasing the kerosene lubricity to a satisfactory level.展开更多
Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real wo...Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real world applications, especially in the areas of telecommunication, sensing, aerospace & defense, optics and medical instrumentation. In the meanwhile, metamaterials are expanding their concept in areas beyond electromagnetics. In this paper, the authors would like to focus on the research and applications in telecommunication and sensing. Octave-bandwidth horn antennas, flat-panel satellite antennas and air-borne holographic satellite antennas are all fabulous examples of clever implementation that bring metamaterials into practical devices. We would like to discuss the features that differentiate metamaterials from conventional counterparts in case studies. With the advancement in design, manufacturing, packaging, detection and testing, more sophisticated features are expected in the telecommunication, sensing, and beyond.展开更多
基金Supported by the National Natural Science Foundation of China(51006010)the Program of Introducing Talents of Discipline to Universities(B12022)
文摘The compression stroke characteristics of free-piston engine generator were studied. The numerical model of the compression stroke was established based on thermodynamics and dynamics equation,and the leak loss,heat loss and friction loss were considered. Through solving numerical equations,the in-cylinder pressure of compression stroke under different compression ratios was calculated,energy transfer and conversion process was analyzed,and the calculated results were experimentally verified. The results showed that the actual effective output of electronic energy and the compression energy stored in the com-pressed gas accounted for about 70%. The compression energy gradually increased with the increasing com-pression ratio. When the compression ratio was more than 7. 5,the actual compression energy increased slowly and the energy error between simulation and test decreased.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375028,51205008)
文摘The current research of compressed air engine(CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N · m to 22.439 N · m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.
文摘For homogeneous charge compression ignition (HCCI) combustion, the auto-ignition process is very sensitive to in-cylinder conditions, including in-cylinder temperature, in-cylinder components and concentrations. Therefore, accurate control is required for reliable and efficient HCCI combustion. This paper outlines a simplified gasoline-fueled HCCI engine model implemented in Simulink environment. The model is able to run in real-time and with fixed simulation steps with the aim of cycle-to-cycle control and hardware- in-the-loop simulation. With the aim of controlling the desired amount of the trapped exhaust gas recirculation (EGR) from the previous cycle, the phase of the intake and exhaust valves and the respective profiles are designed to vary in this model. The model is able to anticipate the auto-ignition timing and the in-cylinder pressure and temperature. The validation has been conducted using a comparison of the experimental results on Ricardo Hydro engine published in a research by Tianjin University and a JAGUAR V6 HCCI test engine at the University of Birmingham. The comparison shows the typical HCCI combustion and a fair agreement between the simulation and experimental results.
基金Project(2007BAA09B05)supported by the National Key Technology Research and Development Program of ChinaProject(50804004)supported by the National Natural Science Foundation of China
文摘In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
文摘Methyl or ethyl esters of vegetable oils are the reliable alternative fuels for the petroleum diesel, because their properties are very nearer to the petroleum diesel. But the flash point and auto-ignition temperatures are very high for these esters. CR (compression ratio) is one of the parameter which influences the atomization and vaporization of fuel. It is also caused for improvement in the turbulence which leads to better combustion. In this work the single cylinder diesel engine was tested at different compression ratios i.e. 16.5:1, 17.5:1, 18.5:1, 19:1 with palm kernel methyl ester without modifications. On increasing compression ratio closeness of molecules of air increases and fuel is injected into that air caused for better combustion. The inbuilt oxygen of methyl or ethyl ester will participate in the combustion and causes for reduction of HC and CO. Better compression ratio for an engine with particular fuel provides satisfactory thermal efficiency and less environmental pollution. In the investigations, for palm kernel methyl ester, 18.5:1 compression ratio is preferable on single cylinder Dl-diesel engine.
基金The National Hi-Tech Research and Development Program(863)of China(No.2002AA501700No.2003AA501012)
文摘A novel regenerative braking algorithm based on regenerative torque optimization with emulate engine compression braking (EECB) was proposed to make effective and maximum use of brake energy in order to improve fuel economy.The actual brake oil pressure of driving wheel which is reduced by the amount of the regenerative braking force is supplied from the electronic hydraulic brake system.Regenerative torque optimization maximizes the actual regenerative power recuperation by energy storage component,and EECB is a useful extended type of regenerative braking.The simulation results show that actual regenerative power recuperation for the novel regenerative braking algorithm is more than using conventional one,and life-span of brake disks is prolonged for the novel algorithm.
文摘Natural methane (CH4) oxidation that is carried out through the use of landfill covers (biocovers) is a promising method for reducing CH4 emissions from landfills. Previous studies on peat-based landfill covers have mainly focused on their biochemical properties (e.g. CH4 oxidation capacity). However, the utilization of peat as a cover material also requires a solid understanding of its geotechnical properties (thermal, hydraulic, and mechanical), which are critical to the performance of any biocover. Therefore, the objective of this context is to investigate and assess the geotechnical properties of peat-based cover materials (peat, peat–sand mixture), including compaction, consolidation, and hydraulic and thermal conductivities. The studied materials show high compressibility to the increase of vertical stress, with compression index (Cc) values ranging from 0.16 to 0.358. The compressibility is a function of sand content such that the peat–sand mixture (1:3) has the lowest Cc value. Both the thermal and hydraulic conductivities are functions of moisture content, dry density, and sand content. The hydraulic conductivity varies from 1.74 × 10^-9 m/s to 7.35 × 10^-9 m/s, and increases with the increase in sand content. The thermal conductivity of the studied samples varies between 0.54 W/(m K) and 1.41 W/(m K) and it increases with the increases in moisture and sand contents. Increases in sand content generally increase the mechanical behavior of peat-based covers; however, they also cause relatively high hydraulic and thermal conductivities which are not favored properties for biocovers.
文摘This paper examines the effect of equalizing ignition delay in a compression ignition engine.Two sets of tests were conducted,i.e.a set of constant injection timing tests with start of fuel injection at 10°crank angle degree(CAD)before top dead center(BTDC)and a set of constant ignition timing tests while also keeping the 10℃AD BTDC injection and adding ignition improver(2-ethylhexylnitrate-,2-EHN)to the fuel mixtures.Soot particles were characterized using DMS-500 instrument in terms of mass,size,and number.The experimental results showed that adding 2-EHN to the model fuel blends reduced the soot surface area,soot mass concentration and soot mean size.Replacing 20 vol%of a C 7-heptane with 20 vol%methyl-decanoate(an oxygenated C 11 molecule)did not affect the ignition delay or rate of fuel air premixing,the peak in-cylinder pressure or heat release rates.Toluene addition(0−22.5 vol%)to heptane increased the mean size of the soot particles generated by only 3%while also resulted in a slight increase in the peak cylinder pressure and peak heat release rates.Blending toluene and methyl-decanoate into heptane without adding 2-EHN increased the premix phase fraction by at least 13%.However,by adding 2-EHN(4×10^(−4)−1.5×10^(−3)),the premixed phase fraction decreased by at least 11%.
文摘Sclerocarya birrea(Marula)seed oil was extracted and characterized for its physico-chemical properties and fatty acid compositions,respectively,by using standardized laboratory methods of the Association of Official and Analytical Chemist(AOAC).The fuel and lubrication properties of marula oil were also determined by using the ASTM methods,and the oil was evaluated in terms of its antiwear,viscometrics,volatility,stability,environmental compatibility properties and energy content.It was found that the high percentage of mono-unsaturated oleic acid(73.6%)provided the oiliness that makes marula oil a natural alternative to genetically modify high oleic acid sunflower oil used in biodiesel production.The aggregate properties of seed oiliness as exemplified by the high oleic acid content,high saponification value(178.6 mg/KOH)and viscosity(41 mm2/s)makes marula oil to be prospective based oil for engine crank case biolubricants with antiwear and friction reduction properties.However,the higher oil viscosity exhibited by marula seed oil in comparison to diesel could pose some durability problems to compression ignition engines,when used directly as fuel.Nonetheless,the reduction of oil viscosity would be required by heating,blending with diesel fuel,or by transesterification to forestall the risk of engine failure resulting from the use of unmodified marula oil.The flash point of marula oil(235℃)is somewhat close to that of monograde SAE 40 mineral oil(240℃),and appreciably higher than that of diesel fuel(52℃).The high flash point makes the seed oil less flammable and ensures safer handling and transportation.While,the low pour point(-13.7℃)ensures the oil usability for engines at cold start and under low load conditions.The oxidation stability of marula oil is ascribed to the traces of natural antioxidants presented in the oil and improves the oil’s shelf life,notwithstanding the high peroxide value(4.58 mequiv/kg),and linolenic acid content(0.3%),which ought to have been the culprit for lipolytic hydrolysis and rancidity.Furthermore,marula seed oil is more biodegradable and environmentally friendly than oils derived from petroleum crude.The closely related cetane number(47.8)and heating values(38.2 mJ/kg)of marula oil to diesel fuel would undeniably sustain the combustion efficiency of diesel fuel and also supply a comparable engine performance output in compression ignition engines.The candidacy of marula seed oil,as a bioenergy resource for alternative fuel,fuel additives and lubricants,will no doubt expand the energy supply mix,conserve fossil fuel reserves and mitigate environmental contamination.
文摘Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a filel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is fotmd to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads tbr 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.
文摘To reduce their fuel related logistic burden,North Atlantic Treaty Organization(NATO)Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment.To this end,F-34(the commercial equivalent is Jet A-1)is replacing distillate diesel fuel in many applications.However,tests conducted with this kerosene type on high frequency reciprocating rig showed that this type of fuel causes unacceptable wear.This excessive wear is caused by the poor lubricity of aviation fuel.In order to make this type of fuel compatible with direct injection compression engines,seven di-carboxylic acid esters have tested to improve the lubricity of kerosene.Tribological results showed that all esters tested in this series of experiments seem to be suitable for increasing the kerosene lubricity to a satisfactory level.
基金supported by Guangdong Innovative Research Team Program(Grant No.2009010005)State Key Laboratory of Meta-RF Electromagnetic Modulation Technology,Shenzhen Innovation P&D Team Program(Peacock Plan)(Grant No.KQE201106020031A)Guangdong Natural Science Funds for Distinguished Young Scholar(Grant No.S20120011253)“Metamaterial Design Method and System”
文摘Metamaterials have earned their name with extraordinary properties such as negative refractive index and invisibility cloaking. With over 15 years of research and development, metamaterials show their debut in real world applications, especially in the areas of telecommunication, sensing, aerospace & defense, optics and medical instrumentation. In the meanwhile, metamaterials are expanding their concept in areas beyond electromagnetics. In this paper, the authors would like to focus on the research and applications in telecommunication and sensing. Octave-bandwidth horn antennas, flat-panel satellite antennas and air-borne holographic satellite antennas are all fabulous examples of clever implementation that bring metamaterials into practical devices. We would like to discuss the features that differentiate metamaterials from conventional counterparts in case studies. With the advancement in design, manufacturing, packaging, detection and testing, more sophisticated features are expected in the telecommunication, sensing, and beyond.