The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the ...The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the self-developed direct tension device and creep testing machine RLW-2000M are used to conduct the creep tests on red sandstone under uniaxial compressive and tensile stresses. The short-term and long-term creep behaviors of rocks under compressive and tensile stresses are investigated, as well as the long-term strength of rocks. It is shown that, under low-stress levels, the creep curve of sandstone consists of decay and steady creep stages; while under high-stress levels, it presents the accelerated creep stage and creep fracture presents characteristics of brittle materials. The relationship between tensile stress and time under uniaxial tension is also put forward. Finally, a nonlinear viscoelastoplastic creep model is used to describe the creep behaviors of rocks under uniaxial compressive and tensile stresses.展开更多
The microstructure,tensile properties and compressive creep resistance of permanent-mould cast Mg-(5-8.5)%Sn-2%La (mass fraction) alloys were investigated.The results show that Mg-(5-8.5)%Sn-2%La alloys are all compos...The microstructure,tensile properties and compressive creep resistance of permanent-mould cast Mg-(5-8.5)%Sn-2%La (mass fraction) alloys were investigated.The results show that Mg-(5-8.5)%Sn-2%La alloys are all composed ofα-Mg phase, Mg_2Sn and Mg-La-Sn compounds.Compared with those of Mg-5%Sn binary alloy,the grain size and the content of Mg_2Sn compound in Mg-5%Sn-2%La alloy are decreased.With the increase of Sn content in Mg-(5-8.5)%Sn-2%La alloys,the content of Mg_2Sn compound increases,while that of Mg-Sn-La compound changes little.In addition,the investigation suggests that the thermally stable Mg-Sn-La and Mg2Sn compounds can improve the tensile properties and compressive creep resistance of the alloys.展开更多
Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al...Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.展开更多
The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0...The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.展开更多
Small amount of calcium addition to the Mg-9Al-0.8Zn-0.2Mn (AZ91) alloy resulted in obvious influence on mechanical properties. The yield strength of the alloys increased with the increase of Ca addition and the maxim...Small amount of calcium addition to the Mg-9Al-0.8Zn-0.2Mn (AZ91) alloy resulted in obvious influence on mechanical properties. The yield strength of the alloys increased with the increase of Ca addition and the maximum strength was obtained from the alloy containing 0.15% of Ca. The creep resistance at the temperatures between 150-220°C was also significantly increased with Ca addition. The creep rate (at 200°C, 50 MPa) of the alloy with 0.15% Ca addition was one order of magnitude lower than that of the base alloy (AZ91). Microstructural observations revealed that the addition of calcium refined the microstructure and enhanced the thermal stability of the β precipitates, which accounted for the improvement of creep resistance at high temperatures.展开更多
The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed t...The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.展开更多
Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2...Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2Mo(molar fraction,%)alloy were studied through compressive and creep tests.The results show that the carbon addition(0.5%,molar fraction)obviously enhances the high temperature compressive strength and creep resistance of theβ-stabilized Ti?45Al?3Fe?2Mo alloy.A lot of nano-scaled Ti3AlC carbides precipitate in theβ-stabilized alloy and these carbides pin the dislocations,and greatly increase the high temperature properties.At the same time,the carbon addition decreases the amount of?phase,refines the lamellar spacing,and causes solution strengthening,which also contribute to the improvement of the high temperature properties.展开更多
The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tensio...The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tension tests,and tensile properties of EPS increase with the increase of density.Volume fraction has no a significant effect on the modulus of these foams.The tensile creep strain increases with stress for EPS with same density,indicating that the creep behavior is of the stress dependency.And the creep behavior of EPS exhibits density dependency,which the creep strain decreases with densities for a fixed stress value.Moreover the creep behavior under the constant tension load is well in coincidence with the three-parameter solid model.展开更多
Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200...Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.展开更多
Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will tr...Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.展开更多
The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn pha...The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in a-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175℃ with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys.展开更多
Small amount(0.5-0.8at.%) of niobium addition to the multicomponent alloys based on Fe3Al(Fe-28Al-5Cr-0.5Mo-0.05Zr-0.05B-0.1Ce) results in the microstructural refinement and the increase in the yield strength at tempe...Small amount(0.5-0.8at.%) of niobium addition to the multicomponent alloys based on Fe3Al(Fe-28Al-5Cr-0.5Mo-0.05Zr-0.05B-0.1Ce) results in the microstructural refinement and the increase in the yield strength at temperatures up to 600℃,but is not beneficial to room temperature ductility.Results of microanalysis indicate that the addition of niobium causes the formation of precipitates with complex compositions which strengthen both matrix and grain boundaries and enhance the creep resistance of the alloys.展开更多
The effect of Zr on the behavior of compressive creep in as cast ZA27 alloy was investigated in the temperature range of 20160 ℃ and under different compressive stresses in the range of 50137.5 MPa with special appar...The effect of Zr on the behavior of compressive creep in as cast ZA27 alloy was investigated in the temperature range of 20160 ℃ and under different compressive stresses in the range of 50137.5 MPa with special apparatus. The results show that the primary compressive creep strains and steady creep rates of ZA27 Zr alloy and ZA27 alloy increase with increasing temperature and stress. However, the primary compressive creep strain and steady creep rate of the ZA27 Zr alloy are lower than that of the ZA27 alloy below 100 ℃, but higher at 160 ℃. The compressive creep behaviors in both ZA27 Zr alloy and ZA27 alloy obey an empirical equation ln t=C-n ln σ+ Q/RT , and the exponent stress n is 3.63 for ZA27 Zr alloy and 3.46 for ZA27 alloy, respectively, the activation energy Q is 87.32 kJ/mol for ZA27 Zr alloy and 81.09 kJ/mol for ZA27 alloy. Different material structural constants are associated with different compressive creep behaviors in the alloy. The compressive creep rate in the alloy is controlled by the lattice diffusion of zinc and dislocation limb.展开更多
Ti-600 is one of the high performance titanium alloys used at 600 ℃,which was developed in Northwest Institute for Nonferrous Metal Research(NIN) in China. The tensile and creep properties of Ti-600 alloy with differ...Ti-600 is one of the high performance titanium alloys used at 600 ℃,which was developed in Northwest Institute for Nonferrous Metal Research(NIN) in China. The tensile and creep properties of Ti-600 alloy with different thermal treatment conditions were investigated. The results indicate that Ti-600 alloy possesses favorite comprehensive properties solution-treated at 1 020 ℃ for 1 h,then air-cool,and aged at 650 ℃ for 8 h,finally air-cooling,especially possesses quite good creep resistance. The residual deformation is less than 0.1% for the alloy exposed at 600 ℃ for 100 h with the stress of 150 MPa,and the bimodal microstructures of the alloy are almost the same as that of the alloy treated by duplex thermal treatment,only needle primary α phases became relatively thicker and coarsened. The ultimate strength and the elongation of the alloy tested at ambient temperature are 1 080 MPa and 12%,respectively;while at 600 ℃,they are 690 MPa and 16%,respectively. The ductility of the alloy tested at room temperature is no less than 5% after thermal exposing at 600 ℃ for 100 h.展开更多
The effect of tensile stress and trace amounts of impurities on the creep activation energyof platinum was studied and the creep mechanism was disscussed.
Phase transformation and micro structural change of an as-cast ZA27 alloy were investigated during compressive creep by X-ray diffraction technique, SEM and TEM. Compressive creep induced decomposition of α metastab...Phase transformation and micro structural change of an as-cast ZA27 alloy were investigated during compressive creep by X-ray diffraction technique, SEM and TEM. Compressive creep induced decomposition of α metastable η' phase and a four-phase transformation, α + ε → T' + η and T' → θ, occurred during the compressive creep testing. The occurrence of negative creep in the alloy resulted from the volume expansion caused by the four-phase transformation. A micro structural change was also observed from a lamellar structure into a spheroidized structure in higher creep strain of tested specimens. It provided evidence of compressive creep induced phase transformation which occurred in ageing process.展开更多
Creep of refractories at high temperatures may have significant influences on the thermomechanical behavior of refractory linings in industrial vessels,and thus the consideration of creep in finite element modeling of...Creep of refractories at high temperatures may have significant influences on the thermomechanical behavior of refractory linings in industrial vessels,and thus the consideration of creep in finite element modeling of industrial vessels is necessary. The present paper introduces an advanced high temperature compressive creep device and a proper inverse procedure using Levenberg-Marquardt algorithm to identify Norton-Bailey creep parameters. In addition,finite element thermomechanical modeling results of a RH-snorkel are presented to illustrate the impact of creep,creep formulations and creep models on the circumferential stress and joint opening of the working lining.展开更多
The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experim...The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.展开更多
The negative creep during compressive creep deformation of as cast ZA27 alloy was investigated at the temperature range of 20160 ℃ and at compressive stress levels from 50137.5 MPa with special apparatus. Results sho...The negative creep during compressive creep deformation of as cast ZA27 alloy was investigated at the temperature range of 20160 ℃ and at compressive stress levels from 50137.5 MPa with special apparatus. Results show that the negative creep in the alloy occurred respectively at 20 ℃ (50 MPa, 87.5 MPa and 100 MPa), 60 ℃(50 MPa and 87.5 MPa) and 100 ℃(50 MPa). According to the phase transformation and theoretical analysis, the negative creep resulted from volume expansion caused by four phase transformation α+ε→T′+η in the alloy. The theoretical analysis is consistent with the experiment results. And the values of negative creep depended on the difference between the compressive creep deformation and the volume expansion.展开更多
In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses wer...In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses were 0 (for match specim ens), 10 3, 5×10 3, 10 4, 5×10 4, 10 5, 5×10 5, 10 6, 5×10 6 Gy, res pectively. Then the weight loss, the equilibrium moisture content (EMC), the rec overy of wood compression set after adsorption (RSA) and the recovery after imme rsion in water (RSW), as well as the creep behaviour under a dry specimen condit ion and under an adsorption and subsequent desorption condition were measured an d discussed. This research proves that the doses of gamma irradiation have great effect on weight loss, EMC, RSA, RSW of irradiated compressed wood of Chinese f ir. The weight loss and the EMC increase, the RSA and the RSW fall drastically w hen the irradiation doses exceed 10 6 Gy. Both the instantaneous compliance and the creep compliance of the irradiated specimens under the two measurement cond itions show the general trend of increase with the increase of gamma irradiation doses. It can be deduced that decomposition or decrystallization reactions happ en in the wood cell wall at high gamma irradiation doses, especially at doses of around 5×10 6 Gy. In addition, this research proves that decomposition of mai n components of cell wall of compressed wood will lead to fixation of compressio n set of wood to a certain degree.展开更多
基金Supported by the West Region Communication Construction Technology Project of the Ministry of Communications (2009318000001)the National Natural Science Foundation of China (50808187)
文摘The consideration of time dependence is essential for the study of deformation and fracturing processes of rock materials, especially for those subjected to strong compressive and tensile stresses. In this paper, the self-developed direct tension device and creep testing machine RLW-2000M are used to conduct the creep tests on red sandstone under uniaxial compressive and tensile stresses. The short-term and long-term creep behaviors of rocks under compressive and tensile stresses are investigated, as well as the long-term strength of rocks. It is shown that, under low-stress levels, the creep curve of sandstone consists of decay and steady creep stages; while under high-stress levels, it presents the accelerated creep stage and creep fracture presents characteristics of brittle materials. The relationship between tensile stress and time under uniaxial tension is also put forward. Finally, a nonlinear viscoelastoplastic creep model is used to describe the creep behaviors of rocks under uniaxial compressive and tensile stresses.
文摘The microstructure,tensile properties and compressive creep resistance of permanent-mould cast Mg-(5-8.5)%Sn-2%La (mass fraction) alloys were investigated.The results show that Mg-(5-8.5)%Sn-2%La alloys are all composed ofα-Mg phase, Mg_2Sn and Mg-La-Sn compounds.Compared with those of Mg-5%Sn binary alloy,the grain size and the content of Mg_2Sn compound in Mg-5%Sn-2%La alloy are decreased.With the increase of Sn content in Mg-(5-8.5)%Sn-2%La alloys,the content of Mg_2Sn compound increases,while that of Mg-Sn-La compound changes little.In addition,the investigation suggests that the thermally stable Mg-Sn-La and Mg2Sn compounds can improve the tensile properties and compressive creep resistance of the alloys.
文摘Effects of alloying processing on tensile test properties of Fe 3Al based alloys have been studied. Results show that microalloying of cerium is very effective on increasing the room temperature ductility of Fe 3Al based alloys. Surface analysis by XPS demonstrates that cerium addition causes the change in the oxide chemistry and provides rapid passivation of the specimen surface. The high temperature strength and creep resistance of Fe 3Al based alloys can be significantly enhanced by alloying additions of tungsten, niobium or molybdenum, especially when combined additions of tungsten with niobium or molybdenum are used. The additions of tungsten, niobium or molybdenum also result in the significant microstructural refinement and the formation of fine precipitates which are identified as M 6C type carbide in the alloys containing tungsten.
基金The National Natural Science Foundation of China(No.51108082)
文摘The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.
文摘Small amount of calcium addition to the Mg-9Al-0.8Zn-0.2Mn (AZ91) alloy resulted in obvious influence on mechanical properties. The yield strength of the alloys increased with the increase of Ca addition and the maximum strength was obtained from the alloy containing 0.15% of Ca. The creep resistance at the temperatures between 150-220°C was also significantly increased with Ca addition. The creep rate (at 200°C, 50 MPa) of the alloy with 0.15% Ca addition was one order of magnitude lower than that of the base alloy (AZ91). Microstructural observations revealed that the addition of calcium refined the microstructure and enhanced the thermal stability of the β precipitates, which accounted for the improvement of creep resistance at high temperatures.
文摘The effect of the mixed rare earths of Ce on the phase transformation in ascast ZA 27 alloy during compressive was investigated under 37 MPa and at 160 deg C by X-raydiffraction technique and SEM. The results showed that the as cast microstructure of ZA 27-RE alloyconsisted of a dendritic Al-rich alpha' surrounded by Zn-rich beta' phase, interdendritic epsilonphase and Zn-rich eta phase together with a complex Z phase which was a complex constitute compound,(RE,Cu)Al_5Zn_(16), dispersed in crystal interfaces or branch crystal interfaces and stable duringcompressive creep test at 160 deg C. The phase transformations of ZA 27-RE alloy, decomposition ofbeta' phase arid four transformation, were delayed by the addition of rare earths, also the lamellarstructure and the spheroidized structure in ZA 27-RE alloy were finer than in ZA 27 alloy duringcompressive creep test at 160 deg C at the same creep time, and the compressive creep resistance ofZA 27-RE alloy was higher than that of ZA 27 alloy.
基金Project(2014CB6644002)supported by the National Basic Research Program of ChinaProject(2016YFB0700302)supported by the National Major Scientific Research Development Program,ChinaProject(2017JJ2311)supported by the Hunan Natural Science Foundation of China
文摘Carbon is an important alloying element in improving high temperature mechanical properties of various metallic materials.The effects of carbon on high temperature mechanical properties of aβ-stabilized Ti?45Al?3Fe?2Mo(molar fraction,%)alloy were studied through compressive and creep tests.The results show that the carbon addition(0.5%,molar fraction)obviously enhances the high temperature compressive strength and creep resistance of theβ-stabilized Ti?45Al?3Fe?2Mo alloy.A lot of nano-scaled Ti3AlC carbides precipitate in theβ-stabilized alloy and these carbides pin the dislocations,and greatly increase the high temperature properties.At the same time,the carbon addition decreases the amount of?phase,refines the lamellar spacing,and causes solution strengthening,which also contribute to the improvement of the high temperature properties.
基金Project(06C243) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tension tests,and tensile properties of EPS increase with the increase of density.Volume fraction has no a significant effect on the modulus of these foams.The tensile creep strain increases with stress for EPS with same density,indicating that the creep behavior is of the stress dependency.And the creep behavior of EPS exhibits density dependency,which the creep strain decreases with densities for a fixed stress value.Moreover the creep behavior under the constant tension load is well in coincidence with the three-parameter solid model.
文摘Small amount of antimony addition to the Mg-9Al-0.8Zn-0.2Mn(AZ91) alloy results in the obvious increase of tensile strength at both ambient and elevated temperatures. The creep resistance at the temperatures up to 200°C is also improved significantly by antimony addition. Microstructural observations revealed that the addition of antimony modifies morphology of the β(Mg17Al12) phase and causes the formation of some rod-shaped precipitates Mg3Sb2 at grain boundaries. These precipitates have high thermal stability and play an important role for strengthening grain boundaries at elevated temperatures.
基金supported by the National Natural Science Foundation of China (Grant No. 51771152)the National Key Research and Development Program of China (Grant No. 2018YFB1106800)。
文摘Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.
基金Project(03GG009-007-4) supported by the Key Program of Science and Technology Bureau of Sichuan Province, China
文摘The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in a-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175℃ with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys.
文摘Small amount(0.5-0.8at.%) of niobium addition to the multicomponent alloys based on Fe3Al(Fe-28Al-5Cr-0.5Mo-0.05Zr-0.05B-0.1Ce) results in the microstructural refinement and the increase in the yield strength at temperatures up to 600℃,but is not beneficial to room temperature ductility.Results of microanalysis indicate that the addition of niobium causes the formation of precipitates with complex compositions which strengthen both matrix and grain boundaries and enhance the creep resistance of the alloys.
文摘The effect of Zr on the behavior of compressive creep in as cast ZA27 alloy was investigated in the temperature range of 20160 ℃ and under different compressive stresses in the range of 50137.5 MPa with special apparatus. The results show that the primary compressive creep strains and steady creep rates of ZA27 Zr alloy and ZA27 alloy increase with increasing temperature and stress. However, the primary compressive creep strain and steady creep rate of the ZA27 Zr alloy are lower than that of the ZA27 alloy below 100 ℃, but higher at 160 ℃. The compressive creep behaviors in both ZA27 Zr alloy and ZA27 alloy obey an empirical equation ln t=C-n ln σ+ Q/RT , and the exponent stress n is 3.63 for ZA27 Zr alloy and 3.46 for ZA27 alloy, respectively, the activation energy Q is 87.32 kJ/mol for ZA27 Zr alloy and 81.09 kJ/mol for ZA27 alloy. Different material structural constants are associated with different compressive creep behaviors in the alloy. The compressive creep rate in the alloy is controlled by the lattice diffusion of zinc and dislocation limb.
基金Projects(2007CB613805) supported by the National Basic Research Program of China
文摘Ti-600 is one of the high performance titanium alloys used at 600 ℃,which was developed in Northwest Institute for Nonferrous Metal Research(NIN) in China. The tensile and creep properties of Ti-600 alloy with different thermal treatment conditions were investigated. The results indicate that Ti-600 alloy possesses favorite comprehensive properties solution-treated at 1 020 ℃ for 1 h,then air-cool,and aged at 650 ℃ for 8 h,finally air-cooling,especially possesses quite good creep resistance. The residual deformation is less than 0.1% for the alloy exposed at 600 ℃ for 100 h with the stress of 150 MPa,and the bimodal microstructures of the alloy are almost the same as that of the alloy treated by duplex thermal treatment,only needle primary α phases became relatively thicker and coarsened. The ultimate strength and the elongation of the alloy tested at ambient temperature are 1 080 MPa and 12%,respectively;while at 600 ℃,they are 690 MPa and 16%,respectively. The ductility of the alloy tested at room temperature is no less than 5% after thermal exposing at 600 ℃ for 100 h.
基金Supported by the National Natural Science Foundation of China
文摘The effect of tensile stress and trace amounts of impurities on the creep activation energyof platinum was studied and the creep mechanism was disscussed.
文摘Phase transformation and micro structural change of an as-cast ZA27 alloy were investigated during compressive creep by X-ray diffraction technique, SEM and TEM. Compressive creep induced decomposition of α metastable η' phase and a four-phase transformation, α + ε → T' + η and T' → θ, occurred during the compressive creep testing. The occurrence of negative creep in the alloy resulted from the volume expansion caused by the four-phase transformation. A micro structural change was also observed from a lamellar structure into a spheroidized structure in higher creep strain of tested specimens. It provided evidence of compressive creep induced phase transformation which occurred in ageing process.
文摘Creep of refractories at high temperatures may have significant influences on the thermomechanical behavior of refractory linings in industrial vessels,and thus the consideration of creep in finite element modeling of industrial vessels is necessary. The present paper introduces an advanced high temperature compressive creep device and a proper inverse procedure using Levenberg-Marquardt algorithm to identify Norton-Bailey creep parameters. In addition,finite element thermomechanical modeling results of a RH-snorkel are presented to illustrate the impact of creep,creep formulations and creep models on the circumferential stress and joint opening of the working lining.
基金Sponsored by the Departmet of Science ad Technology, Government of Heilongjiang Province(Grant No.GC04A407).
文摘The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.
文摘The negative creep during compressive creep deformation of as cast ZA27 alloy was investigated at the temperature range of 20160 ℃ and at compressive stress levels from 50137.5 MPa with special apparatus. Results show that the negative creep in the alloy occurred respectively at 20 ℃ (50 MPa, 87.5 MPa and 100 MPa), 60 ℃(50 MPa and 87.5 MPa) and 100 ℃(50 MPa). According to the phase transformation and theoretical analysis, the negative creep resulted from volume expansion caused by four phase transformation α+ε→T′+η in the alloy. The theoretical analysis is consistent with the experiment results. And the values of negative creep depended on the difference between the compressive creep deformation and the volume expansion.
文摘In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses were 0 (for match specim ens), 10 3, 5×10 3, 10 4, 5×10 4, 10 5, 5×10 5, 10 6, 5×10 6 Gy, res pectively. Then the weight loss, the equilibrium moisture content (EMC), the rec overy of wood compression set after adsorption (RSA) and the recovery after imme rsion in water (RSW), as well as the creep behaviour under a dry specimen condit ion and under an adsorption and subsequent desorption condition were measured an d discussed. This research proves that the doses of gamma irradiation have great effect on weight loss, EMC, RSA, RSW of irradiated compressed wood of Chinese f ir. The weight loss and the EMC increase, the RSA and the RSW fall drastically w hen the irradiation doses exceed 10 6 Gy. Both the instantaneous compliance and the creep compliance of the irradiated specimens under the two measurement cond itions show the general trend of increase with the increase of gamma irradiation doses. It can be deduced that decomposition or decrystallization reactions happ en in the wood cell wall at high gamma irradiation doses, especially at doses of around 5×10 6 Gy. In addition, this research proves that decomposition of mai n components of cell wall of compressed wood will lead to fixation of compressio n set of wood to a certain degree.