We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the...We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.展开更多
The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that ...The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.展开更多
In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data s...In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PS...By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .展开更多
It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the ...It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.展开更多
A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, v...A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.展开更多
The non-uniform temperature distribution in supercritical CO_(2)(Sc-CO_(2))fracturing influences the density,viscosity,and volume expansion or shrinkage rate of Sc-CO_(2),impacting proppant migration.This study presen...The non-uniform temperature distribution in supercritical CO_(2)(Sc-CO_(2))fracturing influences the density,viscosity,and volume expansion or shrinkage rate of Sc-CO_(2),impacting proppant migration.This study presents a coupled computational fluid dynamics-discrete element method and heat transfer model to examine the effects of proppant bed shape and the heat transfers of proppant-wall,proppant-fluid,and fluid-wall on the fluid and proppant temperature fields.The Sc-CO_(2)volume expansion is assessed under various temperature conditions by evaluating the volume-averaged Sc-CO_(2)density.Several factors,including proppant size,shape,thermal conductivity,concentration,temperature difference,and injection velocity,are carefully analyzed to elucidate their impacts.The findings elucidate the existence of four distinct zones in the fluid temperature field.Each zone exhibits different magnitudes of temperature change under diverse conditions and undergoes dynamic transformations with the development of the proppant bed.The fluid-wall heat transfer and the fluid temperatures in Zones C and D are significantly subject to the fluid injection velocity(governing the heating duration),the temperature difference between fluid and formation(impacting the magnitude of heat flux),and the proppant bed shape(controlling the effective heating area).Additionally,the proppant-wall and proppant-fluid heat transfers determine the temperatures of both the proppant bed and the fluid within Zone B,showing a strong correlation with proppant thermal conductivity,proppant size,injection velocity,and temperature difference.The proposed coupled model provides valuable insights into the temperature distributions and flow behaviors of temperature-dependent fracturing fluids and proppants.展开更多
In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilit...In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilities.Here,its axial stiffness is studied through a multi-fold approach based on theory,simulations and experiments.The results indicate that the mechanical strength of the reducer bellows,together with the oil volume and temperature are the main factors influencing its performances.In particular,the wall thickness,wave number,middle distance,and wave height are the most influential parameters.For a certain type of reducer bellows,the compensation capacity attains a maximum when the wave number ratio is between 6:6 and 8:4,the wall thickness is 0.3 mm,and the wave height is between 4–5 mm and 5–6 mm.Moreover,the maximum allowable ambient pres-sure of the optimized reducer bellows can reach 62.6 MPa without failure,and the maximum working water depth is 6284 m.展开更多
We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general s...We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.展开更多
The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the follo...The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.展开更多
The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite...The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.展开更多
The analytical solution of a bubble collapse close to a solid boundary in a compressible water is investigated by means of a perturbation method to first order in the bubble wall Mach number. It is shown, in this pape...The analytical solution of a bubble collapse close to a solid boundary in a compressible water is investigated by means of a perturbation method to first order in the bubble wall Mach number. It is shown, in this paper, that it is the Rayleigh?Plesset equation for incompressible liquid to zero order solution or similar to the Gilmore equation for compressible water to first order solution when the effect of solid boundary is negligibly small enough, i.e., sufficiently far away from the bubble center.展开更多
Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material in...Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material interfaces automatically.In some of these applications,multiple internal energy equations such as those for electron,ion and radiation are involved.In the past decades,several staggeredgrid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly.These schemes can be easily extended to solve problems with multiple internal energy equations.However such schemes are typically not conservative for the total energy.Recently,significant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping.However,these schemes are commonly designed to solve the Euler equations in the form of the total energy,therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications.Such modifications,if not designed carefully,may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy.In this paper,we establish an equivalency relationship between the cell-centered discretizations of the Euler equations in the forms of the total energy and of the internal energy.By a carefully designed modification in the implementation,the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equations and meanwhile it does not lose its total energy conservation property.An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations.Several two dimensional numerical examples for both Euler equations and three-temperature hydrodynamic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving,accuracy and non-oscillatory performance.展开更多
With increasing engineering demands,there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct“physics”.There ...With increasing engineering demands,there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct“physics”.There are two families of high order methods:One is the method of line,relying on the Runge-Kutta(R-K)time-stepping.The building block is the Riemann solution labeled as the solution element“1”.Each step in R-K just has first order accuracy.In order to derive a fourth order accuracy scheme in time,one needs four stages labeled as“1111=4”.The other is the one-stage Lax-Wendroff(LW)type method,which is more compact but is complicated to design numerical fluxes and hard to use when applied to highly nonlinear problems.In recent years,the pair of solution element and dynamics element,labeled as“2”,are taken as the building block.The direct adoption of the dynamics implies the inherent temporal-spatial coupling.With this type of building blocks,a family of two-stage fourth order accurate schemes,labeled as“22=4”,are designed for the computation of compressible fluid flows.The resulting schemes are compact,robust and efficient.This paper contributes to elucidate how and why high order accurate schemes should be so designed.To some extent,the“22=4”algorithm extracts the advantages of the method of line and one-stage LW method.As a core part,the pair“2”is expounded and LW solver is revisited.The generalized Riemann problem(GRP)solver,as the discontinuous and nonlinear version of LW flow solver,and the gas kinetic scheme(GKS)solver,the microscopic LW solver,are all reviewed.The compact Hermite-type data reconstruction and high order approximation of boundary conditions are proposed.Besides,the computational performance and prospective discussions are presented.展开更多
The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing...The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing equations for the fluid domain are set considering the compressibility of the fluid with negligibly small change in density and a linearized free surface. A far boundary condition for the three-dimensional fluid domain is developed so that the far boundary is truncated at a closer proximity to the structure. The coupled problem is solved independently for the structure and the fluid domain by transferring the acceleration of the plate to the fluid and pressure of the fluid to the plate in sequence. Helmholtz equation for the three-dimensional fluid domain and Mindlin's theory for the two-dimensional plate are used for the solution of the interacting domains. Finite element technique is adopted for the solution of this problem with pressure as nodal variable for the fluid domain and displacement for the plate. The time dependent equations are solved in each of the interacting domain using Newmark-fl method. The effectiveness of the technique is demonstrated and the influences of surface wave, exciting frequency and flexibility of the plate on dynamic pressure are investigated.展开更多
Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey pa...Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey paper, we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space. We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.展开更多
In this article we consider the application of Schwarz-type domain decomposition preconditioners to the discontinuous Galerkin finite element approximation of the compressible Navier-Stokes equations.To discretize thi...In this article we consider the application of Schwarz-type domain decomposition preconditioners to the discontinuous Galerkin finite element approximation of the compressible Navier-Stokes equations.To discretize this system of conservation laws,we exploit the(adjoint consistent)symmetric version of the interior penalty discontinuous Galerkin finite element method.To define the necessary coarse-level solver required for the definition of the proposed preconditioner,we exploit ideas from composite finite element methods,which allow for the definition of finite element schemes on general meshes consisting of polygonal(agglomerated)elements.The practical performance of the proposed preconditioner is demonstrated for a series of viscous test cases in both two-and three-dimensions.展开更多
We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z....We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z.: Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math., 51, 229-240 (1998)] to the capillary case but we do not need the condition that the entropy is bounded below. Moreover, from the proof of Theorem 1.2, we also obtain the exact relationship between the size of support of the initial density and the life span of the solutions. We also present a sufficient condition on the blow-up of smooth solutions to the compressible fluid models of Korteweg type when the initial density is positive but has a decay at infinity.展开更多
In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density...In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.展开更多
基金funded by the SNF project 200020_204917 entitled"Structure preserving and fast methods for hyperbolic systems of conservation laws".
文摘We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions.
文摘The present work investigates the mechanically forced vibration of the hydro-elasto-piezoelectric system consisting of a two-layer plate“elastic+PZT”,a compressible viscous fluid,and a rigid wall.It is assumed that the PZT(piezoelectric)layer of the plate is in contact with the fluid and time-harmonic linear forces act on the free surface of the elastic-metallic layer.This study is valuable because it considers for the first time the mechanical vibration of the metal+piezoelectric bilayer plate in contact with a fluid.It is also the first time that the influence of the volumetric concentration of the constituents on the vibration of the hydro-elasto-piezoelectric system is studied.Another value of the present work is the use of the exact equations and relations of elasto-electrodynamics for elastic and piezoelectric materials to describe the motion of the plate layers within the framework of the piecewise homogeneous body model and the use of the linearized Navier-Stokes equations to describe the flow of the compressible viscous fluid.The plane-strain state in the plate and the plane flow in the fluid take place.For the solution of the corresponding boundary-value problem,the Fourier transform is used with respect to the spatial coordinate on the axis along the laying direction of the plate.The analytical expressions of the Fourier transform of all the sought values of each component of the system are determined.The origins of the searched values are determined numerically,after which numerical results on the stress on the fluid and plate interface planes are presented and discussed.These results are obtained for the case where PZT-2 is chosen as the piezoelectric material,steel and aluminum as the elastic metal materials,and Glycerin as the fluid.Analysis of these results allows conclusions to be drawn about the character of the problem parameters on the frequency response of the interfacial stress.In particular,it was found that after a certain value of the vibration frequency,the presence of the metal layer in the two-layer plate led to an increase in the absolute values of the above interfacial stress.
基金Supported by NSFC(11201371,1331005)Natural Science Foundation of Shaanxi Province(2012JQ020)
文摘In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金the National Natural Science Foundation of China (10032050)the National 863 Program Foundation of China (2002AA633100)
文摘By using characteristic analysis of the linear and nonlinear parabolic stability equations ( PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub- characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic., respectively . The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories , the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time , the methods of removing the remained ellipticity are further obtained from the nonlinear PSE .
基金the support of Thousand Talents Programthe National Natural Science Foundation of China(51479114)special fund for Marine Renewable Energy Project(GHME2014ZC01)
文摘It is known to all, the spilling of pipeline may cause serious problems, especially when the pipe conveying petroleum, natural gas or other toxic substance. There are countless accidents during past century. Once the spilling occurs, the vibration of the pipe would aggravate spill situation and even result in crack of the pipe. The consequence will be more severe when the fluid inside is compressible. To prevent the detriment of the spilling model is developed by assuming the leakages as orifices or nozzles and a 2-D vertical simply supported pipe is selected to analyze the phenomena of the oscillation. Combining these two models, the oscillation model for the pipe with leakage is set up and the spilling effect is analyzed by numerical method. The amplitude of the pipe oscillation and the normal stress enlarge as the internal velocity increased, while the shear stress changes very little.
基金Project supported by the National Natural Science Foundation of China(No.50576049) the Foun-dational Scientific Research of National Defence of China(No.A4020060263)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.
基金the National Natural Science Foundation of China(grant number 52034010).
文摘The non-uniform temperature distribution in supercritical CO_(2)(Sc-CO_(2))fracturing influences the density,viscosity,and volume expansion or shrinkage rate of Sc-CO_(2),impacting proppant migration.This study presents a coupled computational fluid dynamics-discrete element method and heat transfer model to examine the effects of proppant bed shape and the heat transfers of proppant-wall,proppant-fluid,and fluid-wall on the fluid and proppant temperature fields.The Sc-CO_(2)volume expansion is assessed under various temperature conditions by evaluating the volume-averaged Sc-CO_(2)density.Several factors,including proppant size,shape,thermal conductivity,concentration,temperature difference,and injection velocity,are carefully analyzed to elucidate their impacts.The findings elucidate the existence of four distinct zones in the fluid temperature field.Each zone exhibits different magnitudes of temperature change under diverse conditions and undergoes dynamic transformations with the development of the proppant bed.The fluid-wall heat transfer and the fluid temperatures in Zones C and D are significantly subject to the fluid injection velocity(governing the heating duration),the temperature difference between fluid and formation(impacting the magnitude of heat flux),and the proppant bed shape(controlling the effective heating area).Additionally,the proppant-wall and proppant-fluid heat transfers determine the temperatures of both the proppant bed and the fluid within Zone B,showing a strong correlation with proppant thermal conductivity,proppant size,injection velocity,and temperature difference.The proposed coupled model provides valuable insights into the temperature distributions and flow behaviors of temperature-dependent fracturing fluids and proppants.
基金Key Laboratory of Petroleum and Natural Gas Equipment of Ministry of Education.
文摘In this study,the pressure compensation mechanism of a reducer bellows is analyzed.This device is typically used to reduce the size of undersea instruments and improve related pressure resistance and sealing capabilities.Here,its axial stiffness is studied through a multi-fold approach based on theory,simulations and experiments.The results indicate that the mechanical strength of the reducer bellows,together with the oil volume and temperature are the main factors influencing its performances.In particular,the wall thickness,wave number,middle distance,and wave height are the most influential parameters.For a certain type of reducer bellows,the compensation capacity attains a maximum when the wave number ratio is between 6:6 and 8:4,the wall thickness is 0.3 mm,and the wave height is between 4–5 mm and 5–6 mm.Moreover,the maximum allowable ambient pres-sure of the optimized reducer bellows can reach 62.6 MPa without failure,and the maximum working water depth is 6284 m.
基金The research of the first author was partially supported by NSC Grant 96-2628-M-001-011 and NSF Grant DMS-0709248The research of the second author was partially supported byNSF Grant DMS-0207154
文摘We study the Green's function for a general hyperbolic-parabolic system, including the Navier-Stokes equations for compressible fluids and the equations for magnetohydrodynamics. More generally, we consider general systems under the basic Kawashima- Shizuta type of conditions. The first result is to make precise the secondary waves with subscale structure, revealing the nature of coupling of waves pertaining to different characteristic families. The second result is on the continuous differentiability of the Green's function with respect to a small parameter when the coefficients of the system are smooth functions of that parameter. The results significantly improve previous results obtained by the authors.
基金supported by National Natural Science Foundation of China-NSAF(11271305,11531010)the Fundamental Research Funds for Xiamen University(201412G004)supported by National Natural Science Foundation of ChinaNSAF(11271305,11531010)
文摘The compressible Navier-Stokes equations driven by a time-periodic external force are considered in this article. We establish the existence of weak time-periodic solutions and improve the result from [3] in the following sense: we extend the class of pressure functions, that is, we consider lower exponent γ.
基金supported in part by the National Science Foundationthe Office of Naval Research
文摘The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.
文摘The analytical solution of a bubble collapse close to a solid boundary in a compressible water is investigated by means of a perturbation method to first order in the bubble wall Mach number. It is shown, in this paper, that it is the Rayleigh?Plesset equation for incompressible liquid to zero order solution or similar to the Gilmore equation for compressible water to first order solution when the effect of solid boundary is negligibly small enough, i.e., sufficiently far away from the bubble center.
基金J.Cheng is supported in part by NSFC grants 10972043,10931004 and 91130002Additional support is provided by the National Basic Research Program of China under grant 2011CB309702+1 种基金C.-W.Shu is supported in part by ARO grant W911NF-08-1-0520 and NSF grant DMS-0809086Q.Zeng is supported in part by NSFC grant 11001026 and CAEP project 2011B0202041.
文摘Lagrangianmethods arewidely used inmany fields formulti-material compressible flow simulations such as in astrophysics and inertial confinement fusion(ICF),due to their distinguished advantage in capturing material interfaces automatically.In some of these applications,multiple internal energy equations such as those for electron,ion and radiation are involved.In the past decades,several staggeredgrid based Lagrangian schemes have been developed which are designed to solve the internal energy equation directly.These schemes can be easily extended to solve problems with multiple internal energy equations.However such schemes are typically not conservative for the total energy.Recently,significant progress has been made in developing cell-centered Lagrangian schemes which have several good properties such as conservation for all the conserved variables and easiness for remapping.However,these schemes are commonly designed to solve the Euler equations in the form of the total energy,therefore they cannot be directly applied to the solution of either the single internal energy equation or the multiple internal energy equations without significant modifications.Such modifications,if not designed carefully,may lead to the loss of some of the nice properties of the original schemes such as conservation of the total energy.In this paper,we establish an equivalency relationship between the cell-centered discretizations of the Euler equations in the forms of the total energy and of the internal energy.By a carefully designed modification in the implementation,the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow with one or multiple internal energy equations and meanwhile it does not lose its total energy conservation property.An advantage of this approach is that it can be easily applied to many existing large application codes which are based on the framework of solving multiple internal energy equations.Several two dimensional numerical examples for both Euler equations and three-temperature hydrodynamic equations in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry preserving,accuracy and non-oscillatory performance.
基金This work is supported by NSFC(nos.11771054,91852207)and Foundation of LCP.
文摘With increasing engineering demands,there need high order accurate schemes embedded with precise physical information in order to capture delicate small scale structures and strong waves with correct“physics”.There are two families of high order methods:One is the method of line,relying on the Runge-Kutta(R-K)time-stepping.The building block is the Riemann solution labeled as the solution element“1”.Each step in R-K just has first order accuracy.In order to derive a fourth order accuracy scheme in time,one needs four stages labeled as“1111=4”.The other is the one-stage Lax-Wendroff(LW)type method,which is more compact but is complicated to design numerical fluxes and hard to use when applied to highly nonlinear problems.In recent years,the pair of solution element and dynamics element,labeled as“2”,are taken as the building block.The direct adoption of the dynamics implies the inherent temporal-spatial coupling.With this type of building blocks,a family of two-stage fourth order accurate schemes,labeled as“22=4”,are designed for the computation of compressible fluid flows.The resulting schemes are compact,robust and efficient.This paper contributes to elucidate how and why high order accurate schemes should be so designed.To some extent,the“22=4”algorithm extracts the advantages of the method of line and one-stage LW method.As a core part,the pair“2”is expounded and LW solver is revisited.The generalized Riemann problem(GRP)solver,as the discontinuous and nonlinear version of LW flow solver,and the gas kinetic scheme(GKS)solver,the microscopic LW solver,are all reviewed.The compact Hermite-type data reconstruction and high order approximation of boundary conditions are proposed.Besides,the computational performance and prospective discussions are presented.
文摘The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing equations for the fluid domain are set considering the compressibility of the fluid with negligibly small change in density and a linearized free surface. A far boundary condition for the three-dimensional fluid domain is developed so that the far boundary is truncated at a closer proximity to the structure. The coupled problem is solved independently for the structure and the fluid domain by transferring the acceleration of the plate to the fluid and pressure of the fluid to the plate in sequence. Helmholtz equation for the three-dimensional fluid domain and Mindlin's theory for the two-dimensional plate are used for the solution of the interacting domains. Finite element technique is adopted for the solution of this problem with pressure as nodal variable for the fluid domain and displacement for the plate. The time dependent equations are solved in each of the interacting domain using Newmark-fl method. The effectiveness of the technique is demonstrated and the influences of surface wave, exciting frequency and flexibility of the plate on dynamic pressure are investigated.
文摘Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations. In this survey paper, we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space. We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.
基金S.Giani and P.Houston acknowledge the financial support of the EPSRC under the grant EP/H005498.PH also acknowledges the support of the Leverhulme Trust.
文摘In this article we consider the application of Schwarz-type domain decomposition preconditioners to the discontinuous Galerkin finite element approximation of the compressible Navier-Stokes equations.To discretize this system of conservation laws,we exploit the(adjoint consistent)symmetric version of the interior penalty discontinuous Galerkin finite element method.To define the necessary coarse-level solver required for the definition of the proposed preconditioner,we exploit ideas from composite finite element methods,which allow for the definition of finite element schemes on general meshes consisting of polygonal(agglomerated)elements.The practical performance of the proposed preconditioner is demonstrated for a series of viscous test cases in both two-and three-dimensions.
基金Supported by National Natural Science Foundation of China-NSAF (Grant No. 10976026)
文摘We show the blow-up of smooth solutions to a non-isothermal model of capillary compressible fluids in arbitrary space dimensions with initial density of compact support. This is an extension of Xin's result [Xin, Z.: Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density. Comm. Pure Appl. Math., 51, 229-240 (1998)] to the capillary case but we do not need the condition that the entropy is bounded below. Moreover, from the proof of Theorem 1.2, we also obtain the exact relationship between the size of support of the initial density and the life span of the solutions. We also present a sufficient condition on the blow-up of smooth solutions to the compressible fluid models of Korteweg type when the initial density is positive but has a decay at infinity.
文摘In this paper, we study a Cauchy problem for the equations of 3D compressible viscoelastic fluids with vacuum. We establish a blow-up criterion for the local strong solutions in terms of the upper bound of the density and deformation gradient.