An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodyn...An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%.展开更多
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow...Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.展开更多
A numerical methodology for investigating compressor instabilities in a multistage environment is presented. The method is based on a stage-by-stage dynamic compression model and considers air compressibility explicit...A numerical methodology for investigating compressor instabilities in a multistage environment is presented. The method is based on a stage-by-stage dynamic compression model and considers air compressibility explicitly throughout the compressor. It involves discretizing the compression system into distinct elements and a use of the local elemental characteristic of mean performance. The models are presented in both nonlinear and linearized forms. The linearised form permits well surge condition prediction for multistage axial compressors, while the non-linear form is able to investigate the growth of local flow disturbances, and helps to develop practical control strategy. Validations were carried out using the data from several aircraft engine compressors. A good experiment-model consistency is achieved.展开更多
Three dielectric barrier discharge plasma actuators were mounted at the positions of 20%,40%and 60%of chord length on the endwall in a compressor cascade.The downstream flow field of the cascade has been measured with...Three dielectric barrier discharge plasma actuators were mounted at the positions of 20%,40%and 60%of chord length on the endwall in a compressor cascade.The downstream flow field of the cascade has been measured with a mini five-hole pressure probe with and without the plasma actuation.The measured results show that the plasma actuation most effectively reduces total pressure loss and flow blockage when the actuators are operated simultaneously.As each of the actuators is operated independently,the actuator at the position of 20%of chord length most effectively reduces flow blockage, and the actuator at the position of 60%of chord length fairly reduces total pressure loss.However, negative pressure loss reduction occurs with the plasma actuator at the position of 40%of chord length.In brief,the plasma actuation placed on the endwall in the cascade apparently influences the endwall secondary flow,and the optimal locations and strength of actuation are critical for the control of endwall secondary flow in a compressor cascade with the plasma actuators.展开更多
基金The project supported by the National Natural Science Foundation of China (10477002 and 50476003)the Ph.D. Innovative Foundation of Beihang University
文摘An experimental investigation conducted in a high-speed plane cascade wind tunnel demonstrates that unsteady flow control by using synthetic (zero mass flux) vortex generator jets can effectively improve the aerodynamic performances and reduce (or eliminate) flow separation in axial compressor cascade. The Mach number of the incoming flow is up to 0.7 and most tested cases are at Ma = 0.3. The incidence is 10° at which the boundary layer is separated from 70% of the chord length. The roles of excitation frequency, amplitude, location and pitch angle are investigated. Preliminary results show that the excitation amplitude plays a very important role, the optimal excitation location is just upstream of the separation point, and the optimal pitch angle is 35°. The maximum relative reduction of loss coefficient is 22.8%.
基金National Natural Science Foundation of China(Nos.50676094,50676095,50776086 and 50736007)Fundamental Researches of National Defense in Chinese Academy of Sciences(No.AB20070090)
文摘Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.
基金This project is supported by National Natural Science Foundation of China (No.50146014) National Natural Science Foundation of Xi'an Jiaotong University, China (No.573023).
文摘A numerical methodology for investigating compressor instabilities in a multistage environment is presented. The method is based on a stage-by-stage dynamic compression model and considers air compressibility explicitly throughout the compressor. It involves discretizing the compression system into distinct elements and a use of the local elemental characteristic of mean performance. The models are presented in both nonlinear and linearized forms. The linearised form permits well surge condition prediction for multistage axial compressors, while the non-linear form is able to investigate the growth of local flow disturbances, and helps to develop practical control strategy. Validations were carried out using the data from several aircraft engine compressors. A good experiment-model consistency is achieved.
基金Supported by the National Natural Science Foundation of China(Grant No.50776086)
文摘Three dielectric barrier discharge plasma actuators were mounted at the positions of 20%,40%and 60%of chord length on the endwall in a compressor cascade.The downstream flow field of the cascade has been measured with a mini five-hole pressure probe with and without the plasma actuation.The measured results show that the plasma actuation most effectively reduces total pressure loss and flow blockage when the actuators are operated simultaneously.As each of the actuators is operated independently,the actuator at the position of 20%of chord length most effectively reduces flow blockage, and the actuator at the position of 60%of chord length fairly reduces total pressure loss.However, negative pressure loss reduction occurs with the plasma actuator at the position of 40%of chord length.In brief,the plasma actuation placed on the endwall in the cascade apparently influences the endwall secondary flow,and the optimal locations and strength of actuation are critical for the control of endwall secondary flow in a compressor cascade with the plasma actuators.