期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Infimum Properties Differ in the Weak Truth-table Degrees and the Turing Degrees
1
作者 LiangYU DeChengDING 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第1期163-168,共6页
We prove that there are non-recursive r.e.sets A and C with A<T C such that for every set F(?)T A,C∩F≡w(?).
关键词 Minimal pair Weak truth table degree turing degree Recursively enumerable set
原文传递
Modulo computably enumerable degrees by cupping partners
2
作者 Wei WANG De-cheng DING 《Science China Mathematics》 SCIE 2007年第6期899-912,共14页
Cupping partners of an element in an upper semilattice with a greatest element 1 are those joining the element to 1. We define a congruence relation on such an upper semilattice by considering the elements having the ... Cupping partners of an element in an upper semilattice with a greatest element 1 are those joining the element to 1. We define a congruence relation on such an upper semilattice by considering the elements having the same cupping partners as equivalent. It is interesting that this congruence relation induces a non-dense quotient structure of computably enumerable Turing degrees. Another main interesting phenomenon in this article is that on the computably enumerable degrees, this relation is different from that modulo the noncuppable ideal, though they define a same equivalent class for the computable Turing degree. 展开更多
关键词 turing degrees computably enumerable cupping partner 03D25
原文传递
每个非零的 a∈ R/ M中不存在极小元(英文) 被引量:1
3
作者 张再跃 眭跃飞 《软件学报》 EI CSCD 北大核心 2000年第11期1425-1429,共5页
证明了给定任何非零的递归可枚举图灵度 a存在递归可枚举图灵度 c<a和 d∈M,使得 a≤ d∪ c.由此可以得到 :在每个非零 [a]∈ R∧ M中不存在极小元 ,即给定任何非可盖递归可枚举图灵度 a,存在一个递归可枚举图灵度 c<a,使得 [c]=[a].
关键词 图灵度 递归可枚举度 极小时
下载PDF
一个高的钻石定理(英文)
4
作者 李昂生 杨东屏 《软件学报》 EI CSCD 北大核心 2000年第1期23-39,共17页
证明存在一个保持最大元 1的可计算枚举高度的钻石格 .
关键词 可计算性理论 可计算枚举度 钻石定理
下载PDF
Plus cupping degrees do not form an ideal
5
作者 LI Angsheng1,2 & ZHAO Yicheng1 1. Institute of Software,Chinese Academy of Sciences,Beijing 100080,China 2. School of Information Sciences,Beijing Normal University,Beijing 100871,China 《Science in China(Series F)》 2004年第5期635-654,共20页
A computably enumerable (c.e.,for short)degree a is called plus cupping,if every c.e. degree x with 0<x≤a is cuppable.Let PC be the set of all plus cupping degrees.In the present paper,we show that PC is not close... A computably enumerable (c.e.,for short)degree a is called plus cupping,if every c.e. degree x with 0<x≤a is cuppable.Let PC be the set of all plus cupping degrees.In the present paper,we show that PC is not closed under the join operation ∨ by constructing two plus cupping degrees which join to a high degree. So by the Harringtons noncupping theorem,PC is not an ideal of ε. 展开更多
关键词 computably enumerable set turing degree definability.
原文传递
The low_n and low_m r. e. degrees are not elementarily equivalent
6
作者 Richard A.Shore 《Science China Mathematics》 SCIE 2004年第6期950-956,共7页
Jockusch, Li and Yang showed that the Lown and Low1 r.e. degrees are not elementarily equivalent for n>1. We answer a question they raise by using the results of Nies, Shore and Slaman to show that the Lown and Low... Jockusch, Li and Yang showed that the Lown and Low1 r.e. degrees are not elementarily equivalent for n>1. We answer a question they raise by using the results of Nies, Shore and Slaman to show that the Lown and Lowm r.e. degrees are not elementarily equivalent for n > m > 1. 展开更多
关键词 recursively enumerable computably enumerable turing degrees jump classes
原文传递
Non-Uniformity and Generalised Sacks Splitting 被引量:1
7
作者 COOPER S.Barry 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期327-334,共8页
We show that there do not exist computable fimetions f_1(e,i).f_2(e,i).g_1(e,i),g_2(e,i)such that for all e,i ∈ω, (1)(W_(f_1)(e,i)-W_(f_2)(e,i))≤T(W_e-W_1): (2)(W_(g_1)(e,i)-W_(g_2)(e,i))≤T(W_e-W_i): (3)(W_w-W_i)... We show that there do not exist computable fimetions f_1(e,i).f_2(e,i).g_1(e,i),g_2(e,i)such that for all e,i ∈ω, (1)(W_(f_1)(e,i)-W_(f_2)(e,i))≤T(W_e-W_1): (2)(W_(g_1)(e,i)-W_(g_2)(e,i))≤T(W_e-W_i): (3)(W_w-W_i)≤T(W_(f_1)(e,i)-W_(f_2)(e,i))⊕(W_(g_1)(e,i)-W_(g_2)(e,i)): (4)(W_e-W_i)T(W_(f_1)(e,i)-W_(f_2)(e,i))uuless(W_e-W_i)≤T:and (5)(W_e-W_i)T(E_(g_1)(e,i)-W_(g_2)(e,i))unless(W_w-W_i)≤T. It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly. 展开更多
关键词 computably enumerable(c.e.) Difference of computably enumerable sets(d.c.e. or 2-c.e.) turing degrees Splitting and nonsplitting
原文传递
An extension of Harrington's noncupping theorem 被引量:1
8
作者 喻良 丁德成 《Science in China(Series F)》 2003年第3期199-209,共11页
(i) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w x implies a ∪ w b ∪ x.(ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping re... (i) Call a c.e. degree b anti-cupping relative to x, if there is a c.e. a < b such that for any c.e. w, w x implies a ∪ w b ∪ x.(ii) Call a c.e. degree b everywhere anti-cupping (e.a.c.), if it is anti-cupping relative to x for each c.e. degree x.By a tree method, we prove that every high c.e. degree has e.a.c. property by extending Harrington's anti-cupping theorem. 展开更多
关键词 anti-cupping property noncuppable high T-degrees computably enumerable set.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部