Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng...Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.展开更多
This paper presents the instability analysis of unsymmetrical rotor bearing system in accordance with the Campbell diagrams of the system, and concludes that the unstable regions stay in high speed regions with the in...This paper presents the instability analysis of unsymmetrical rotor bearing system in accordance with the Campbell diagrams of the system, and concludes that the unstable regions stay in high speed regions with the increase of supporting stiffness and they decrease or disappear with the decrease of the inequality diametrical moments of the inertia and stiffness of shaft.展开更多
q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hype...q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.展开更多
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul...To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.展开更多
The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to ...The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.展开更多
The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation f...The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.展开更多
Aimed at requirements, a kind of radar stabilized platform with external rotor and orthogonal shafts is designed. Its dynamic characters are analyzed by using finite element theory and ANSYS software. Also, a traditio...Aimed at requirements, a kind of radar stabilized platform with external rotor and orthogonal shafts is designed. Its dynamic characters are analyzed by using finite element theory and ANSYS software. Also, a traditional stabilized platform with inner rotor is designed for comparison. It is shown that the new platform reduces two transmission links and 20% of precise components, its weight decreases by 20%, its natural frequency and rigidity are enlarged, the operating accuracy and stationary are increased. The new stabilized platform is more superiority and practicability. Its design method and analysis results have already been used in development mission. It provides helpful reference for similar structure designs.展开更多
Swirl brakes are usually introduced at the seal entrance in industry to improve the seal stability,especially for labyrinth seals suffering low seal clearance and high inlet preswirl ratio.However,how to arrange swirl...Swirl brakes are usually introduced at the seal entrance in industry to improve the seal stability,especially for labyrinth seals suffering low seal clearance and high inlet preswirl ratio.However,how to arrange swirl brakes at the seal entrance to obtain better seal stability retains unknown,such as the axial distance between the brake trailing edge and the first tooth.To this end,the effects of the distance between brakes and the first tooth on the leakage flow rate and seal rotordynamic coefficients were numerically investigated at typical inlet preswirl ratios of 0.45 and0.8,and the predicted results were in comparison with the results for no-brake configuration.The obtained results disclose that the brake configuration arranged against the first tooth produces lower circumferential velocity in the downstream of the brakes as a result of the larger counterclockwise vortex moving from the brake trailing edge to the brake leading edge when compared to the brake configuration away from the first tooth.Besides,the dropped circumferential velocity in the downstream of brakes will cause larger pressure fluctuation in the circumferential direction and thus generates larger tangential force to restrain the rotor forward whirl.On the other hand,the effective damping is further increased when the distance between brakes and the first tooth decreases to zero,that is,the crossover frequency is even disappeared at the inlet preswirl ratio of 0.45 and successfully drops from 69.9 Hz to 32.7 Hz at the preswirl ratio of 0.8.展开更多
A triple helix composed of three dodecanucleotides,5'-d(TC)6,5-(AG)6 and 3'-d(TC)6 with each containing a methylcytosme or a protonated-cylosine,was examined in terms of various interactions Computational malv...A triple helix composed of three dodecanucleotides,5'-d(TC)6,5-(AG)6 and 3'-d(TC)6 with each containing a methylcytosme or a protonated-cylosine,was examined in terms of various interactions Computational malvsis of the stability of triplex formation was consistent with the experimental observations.The Hoogsleen hase among interaction was increased through substitution of 5-methylcytosme for cytosme and/or protonation The inter-woon between water molecules and DNA triplex was visualized in terms,of the end-to-end distance change of each trand The chain length was reduced by about 7 5%-16 2% due to the screening effect In addition,as the screening fleer nerenises,Hoogsteen base pairs appear to be stable in triplex formation.Our computational results also show this the effect of protonated- and methylated cytosme on the stability of triplex formation was due to the change of the beerostanis mteractions rather than the surface stacking interaction展开更多
Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation...Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation degree for design is proposed.Through the finite element method,the profile characteristics of rotor blade can be obtained efficiently and accurately,and the synchronization of parametric design and finite element analysis of structural characteristics can be realized.Then a 23-degrees of freedom non-linear beam element is used to simulate the extended one-dimensional beam,thereby a nonlinear differential equation describing the elastic motion of the rotor is established.To obtain the crosssectional target characteristics of the blades,an inverse design method is proposed for cross-section components based on combinatorial optimization algorithm.The calculation and validation work show that the proposed model can effectively analyze the aeroelastic characteristics of general composite rotors.Further,the influence of cross-sectional parameters on the aeroelastic stability and hub loads of hingeless rotor is analyzed and some remarkable conclusions are obtained.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
Dynamic stability equations of bearingless rotor blades were investigated using a simplified model.The aerodynamic loads of blades were evaluated using two-dimensional airfoil theory.Perturbation equations were obtain...Dynamic stability equations of bearingless rotor blades were investigated using a simplified model.The aerodynamic loads of blades were evaluated using two-dimensional airfoil theory.Perturbation equations were obtained by linearization of the perturbation.A normal-mode approach was used to transform the equations expressed by nodal degrees of freedom into equations expressed by modal degrees of freedom,which can reduce the dimension of the equations.The stability results of rotor blades were presented using eigenvalue analysis.The shape function matrix was obtained using spline interpolation,which simplified the analysis and made assembly of the inertial matrix,damping matrix,and stiffness matrix a simple mathematical summation.The results indicate that the method is efficient and greatly simplifies the analysis.展开更多
For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computati...For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computational stability is given. It is proved to be practical and effective through several numerical examples. The stability criteria obtained by this method are really the necessary conditions of computational stability.展开更多
The conceptual design and optimization of a tilt-rotor Micro Air Vehicle(MAV) for a well-defined mission are performed. The objective of this design cycle is to decrease the design time in order to efficiently create ...The conceptual design and optimization of a tilt-rotor Micro Air Vehicle(MAV) for a well-defined mission are performed. The objective of this design cycle is to decrease the design time in order to efficiently create a functional tilt-rotor drone. A flight mission is firstly defined for a tiltrotor MAV performing hovering and cruise flight scenarios. Secondly, a complex wing shape is chosen and modeled in order to determine the final shape. The initial shape is scaled in order to acquire an arbitrary wingspan of one meter. For the specific area and wingspan, the aspect ratio of the designed wing shape is found to be equal to 2.32. Thirdly, a constraint analysis of the MAV is performed by using an energy balance analysis for six different flight scenarios. This analysis yields the required power loading and wing loading. Fourthly, the weight of the vehicle is estimated using both statistical and computational methods. After estimating the total weight and the wing loading of the MAV, the surface of the wing is determined, yielding a final wingspan of 0.76 m. Subsequently, considering the total weight of the designed MAV, the needed lift coefficient is determined.Fifthly, using the lift coefficient in conjunction with XLFR5, a batch of airfoils is selected and analyzed to evaluate the aerodynamic coefficients of the wing with each airfoil. This analysis ultimately leads to the optimum airfoil being selected. Finally, design of the fuselage and tail, internal components selection, and servo-mechanisms design are carried out prior to a stability analysis. All these proposed steps are needed to design efficient and functional tilt-rotor MAVs.展开更多
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under Grant Number RGP2/302/45supported by the Deanship of Scientific Research,Vice Presidency forGraduate Studies and Scientific Research,King Faisal University,Saudi Arabia(Grant Number A426).
文摘Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results.
文摘This paper presents the instability analysis of unsymmetrical rotor bearing system in accordance with the Campbell diagrams of the system, and concludes that the unstable regions stay in high speed regions with the increase of supporting stiffness and they decrease or disappear with the decrease of the inequality diametrical moments of the inertia and stiffness of shaft.
文摘q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.
基金supported by the International Science and Technology Cooperation Programme of Hainan Province,China (Grant No.ZDYF2016226)the National Natural Science Foundation of China(Grant No.51879203)
文摘To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.
基金supported by the National Natural Science Foundation of China(61872006)Scientific Research Activities Foundation of Academic and Technical Leaders and Reserve Candidates in Anhui Province(2020H233)+2 种基金Top-notch Discipline(specialty)Talents Foundation in Colleges and Universities of Anhui Province(gxbj2020057)the Startup Foundation for Introducing Talent of NUISTby Institutional Fund Projects from Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia(IFPDP-216-22)。
文摘The recent development of channel technology has promised to reduce the transaction verification time in blockchain operations.When transactions are transmitted through the channels created by nodes,the nodes need to cooperate with each other.If one party refuses to do so,the channel is unstable.A stable channel is thus required.Because nodes may show uncooperative behavior,they may have a negative impact on the stability of such channels.In order to address this issue,this work proposes a dynamic evolutionary game model based on node behavior.This model considers various defense strategies'cost and attack success ratio under them.Nodes can dynamically adjust their strategies according to the behavior of attackers to achieve their effective defense.The equilibrium stability of the proposed model can be achieved.The proposed model can be applied to general channel networks.It is compared with two state-of-the-art blockchain channels:Lightning network and Spirit channels.The experimental results show that the proposed model can be used to improve a channel's stability and keep it in a good cooperative stable state.Thus its use enables a blockchain to enjoy higher transaction success ratio and lower transaction transmission delay than the use of its two peers.
基金supported by National Natural Science Foundation of China (Grant No. 50635060)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA050501)+1 种基金National Key Basic Research Program of China (973 Program,Grant No. 2007CB707705,Grant No. 2007CB707706)Research Funds for the Central Universities of China
文摘The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.
基金Sponsored by Optic-mechanical Integration Research and Design Technology Innovation Platform(20082108)
文摘Aimed at requirements, a kind of radar stabilized platform with external rotor and orthogonal shafts is designed. Its dynamic characters are analyzed by using finite element theory and ANSYS software. Also, a traditional stabilized platform with inner rotor is designed for comparison. It is shown that the new platform reduces two transmission links and 20% of precise components, its weight decreases by 20%, its natural frequency and rigidity are enlarged, the operating accuracy and stationary are increased. The new stabilized platform is more superiority and practicability. Its design method and analysis results have already been used in development mission. It provides helpful reference for similar structure designs.
基金funded by the National Key R&D Program of China(No.2017YFB0601804)the National Natural Science Foundation of China(No.51776152)。
文摘Swirl brakes are usually introduced at the seal entrance in industry to improve the seal stability,especially for labyrinth seals suffering low seal clearance and high inlet preswirl ratio.However,how to arrange swirl brakes at the seal entrance to obtain better seal stability retains unknown,such as the axial distance between the brake trailing edge and the first tooth.To this end,the effects of the distance between brakes and the first tooth on the leakage flow rate and seal rotordynamic coefficients were numerically investigated at typical inlet preswirl ratios of 0.45 and0.8,and the predicted results were in comparison with the results for no-brake configuration.The obtained results disclose that the brake configuration arranged against the first tooth produces lower circumferential velocity in the downstream of the brakes as a result of the larger counterclockwise vortex moving from the brake trailing edge to the brake leading edge when compared to the brake configuration away from the first tooth.Besides,the dropped circumferential velocity in the downstream of brakes will cause larger pressure fluctuation in the circumferential direction and thus generates larger tangential force to restrain the rotor forward whirl.On the other hand,the effective damping is further increased when the distance between brakes and the first tooth decreases to zero,that is,the crossover frequency is even disappeared at the inlet preswirl ratio of 0.45 and successfully drops from 69.9 Hz to 32.7 Hz at the preswirl ratio of 0.8.
基金Work supported by the Chinese Academy of Sciences
文摘A triple helix composed of three dodecanucleotides,5'-d(TC)6,5-(AG)6 and 3'-d(TC)6 with each containing a methylcytosme or a protonated-cylosine,was examined in terms of various interactions Computational malvsis of the stability of triplex formation was consistent with the experimental observations.The Hoogsleen hase among interaction was increased through substitution of 5-methylcytosme for cytosme and/or protonation The inter-woon between water molecules and DNA triplex was visualized in terms,of the end-to-end distance change of each trand The chain length was reduced by about 7 5%-16 2% due to the screening effect In addition,as the screening fleer nerenises,Hoogsteen base pairs appear to be stable in triplex formation.Our computational results also show this the effect of protonated- and methylated cytosme on the stability of triplex formation was due to the change of the beerostanis mteractions rather than the surface stacking interaction
文摘Based on FEM theory,a method of dynamic analysis for hingeless rotors considering anisotropic composite materials is established.A parametric modeling method of composite blade with typical profile and high simulation degree for design is proposed.Through the finite element method,the profile characteristics of rotor blade can be obtained efficiently and accurately,and the synchronization of parametric design and finite element analysis of structural characteristics can be realized.Then a 23-degrees of freedom non-linear beam element is used to simulate the extended one-dimensional beam,thereby a nonlinear differential equation describing the elastic motion of the rotor is established.To obtain the crosssectional target characteristics of the blades,an inverse design method is proposed for cross-section components based on combinatorial optimization algorithm.The calculation and validation work show that the proposed model can effectively analyze the aeroelastic characteristics of general composite rotors.Further,the influence of cross-sectional parameters on the aeroelastic stability and hub loads of hingeless rotor is analyzed and some remarkable conclusions are obtained.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
基金National Hi-tech Research and Development Program of China(2012AA112201)National Natural Science Foundation of China(10772013)+1 种基金The Fundamental Research Funds for the Central UniversitiesAeronautical Science Foundation of China(20100251007)
文摘Dynamic stability equations of bearingless rotor blades were investigated using a simplified model.The aerodynamic loads of blades were evaluated using two-dimensional airfoil theory.Perturbation equations were obtained by linearization of the perturbation.A normal-mode approach was used to transform the equations expressed by nodal degrees of freedom into equations expressed by modal degrees of freedom,which can reduce the dimension of the equations.The stability results of rotor blades were presented using eigenvalue analysis.The shape function matrix was obtained using spline interpolation,which simplified the analysis and made assembly of the inertial matrix,damping matrix,and stiffness matrix a simple mathematical summation.The results indicate that the method is efficient and greatly simplifies the analysis.
文摘For the non-conservative difference schemes of nonlinear evolution equations with aperiodic boundary conditions, taken one-dimensional nonlinear advection equation as an example, a new method for judging the computational stability is given. It is proved to be practical and effective through several numerical examples. The stability criteria obtained by this method are really the necessary conditions of computational stability.
基金the financial support from New Mexico Space Grant Consortium
文摘The conceptual design and optimization of a tilt-rotor Micro Air Vehicle(MAV) for a well-defined mission are performed. The objective of this design cycle is to decrease the design time in order to efficiently create a functional tilt-rotor drone. A flight mission is firstly defined for a tiltrotor MAV performing hovering and cruise flight scenarios. Secondly, a complex wing shape is chosen and modeled in order to determine the final shape. The initial shape is scaled in order to acquire an arbitrary wingspan of one meter. For the specific area and wingspan, the aspect ratio of the designed wing shape is found to be equal to 2.32. Thirdly, a constraint analysis of the MAV is performed by using an energy balance analysis for six different flight scenarios. This analysis yields the required power loading and wing loading. Fourthly, the weight of the vehicle is estimated using both statistical and computational methods. After estimating the total weight and the wing loading of the MAV, the surface of the wing is determined, yielding a final wingspan of 0.76 m. Subsequently, considering the total weight of the designed MAV, the needed lift coefficient is determined.Fifthly, using the lift coefficient in conjunction with XLFR5, a batch of airfoils is selected and analyzed to evaluate the aerodynamic coefficients of the wing with each airfoil. This analysis ultimately leads to the optimum airfoil being selected. Finally, design of the fuselage and tail, internal components selection, and servo-mechanisms design are carried out prior to a stability analysis. All these proposed steps are needed to design efficient and functional tilt-rotor MAVs.