This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account...This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account the effect of the mass of impact object and the system of the closed cylindrical shell by impact, and transform the distributed mass of the whole cylindrical shell into an only concentrated 'equivalent mass' by the method of reduced mass. Consequently we derive the dynamic factor of the closed cylindrical shell due to impact load.The method proposed in this paper is of practical worth and is more convenient in calculations.展开更多
Because of cloud computing's high degree of polymerization calculation mode, it can't give full play to the resources of the edge device such as computing, storage, etc. Fog computing can improve the resource ...Because of cloud computing's high degree of polymerization calculation mode, it can't give full play to the resources of the edge device such as computing, storage, etc. Fog computing can improve the resource utilization efficiency of the edge device, and solve the problem about service computing of the delay-sensitive applications. This paper researches on the framework of the fog computing, and adopts Cloud Atomization Technology to turn physical nodes in different levels into virtual machine nodes. On this basis, this paper uses the graph partitioning theory to build the fog computing's load balancing algorithm based on dynamic graph partitioning. The simulation results show that the framework of the fog computing after Cloud Atomization can build the system network flexibly, and dynamic load balancing mechanism can effectively configure system resources as well as reducing the consumption of node migration brought by system changes.展开更多
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil...A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.展开更多
In this paper a novel method to generate high-precision and continuously adjustable digital time-delay by utilizing the linear phase of a FIR filter is presented. The generated time-delay can be continuously changed b...In this paper a novel method to generate high-precision and continuously adjustable digital time-delay by utilizing the linear phase of a FIR filter is presented. The generated time-delay can be continuously changed by adjusting the filter weights. The time-delay is pre cise and valid for wide-band, while the computational load is low. The proposed approach can find applications in wide-band digital beamforming, adaptive delay estimation, temporal analy sis of reflected waveform, etc.. In the paper, the basic principle, design steps and simulation re sults are given. Also shown are some typical practical applications.展开更多
The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT)...The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.展开更多
Load flow computations are the basis for voltage security assessments in power systems. All of the flow equation solutions must be computed to explore the mechanisms of voltage instability and voltage collapse. Conv...Load flow computations are the basis for voltage security assessments in power systems. All of the flow equation solutions must be computed to explore the mechanisms of voltage instability and voltage collapse. Conventional algorithms, such as Newton's methods and its variations, are not very desirable because they can not be easily used to find all of the solutions. This paper investigates homotopy methods which can be used for numerically computing the set of all isolated solutions of multivariate polynomial systems resulting from load flow computations. The results significantly reduce the number of paths being followed.展开更多
文摘This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account the effect of the mass of impact object and the system of the closed cylindrical shell by impact, and transform the distributed mass of the whole cylindrical shell into an only concentrated 'equivalent mass' by the method of reduced mass. Consequently we derive the dynamic factor of the closed cylindrical shell due to impact load.The method proposed in this paper is of practical worth and is more convenient in calculations.
基金supported in part by the National Science and technology support program of P.R.China(No.2014BAH29F05)
文摘Because of cloud computing's high degree of polymerization calculation mode, it can't give full play to the resources of the edge device such as computing, storage, etc. Fog computing can improve the resource utilization efficiency of the edge device, and solve the problem about service computing of the delay-sensitive applications. This paper researches on the framework of the fog computing, and adopts Cloud Atomization Technology to turn physical nodes in different levels into virtual machine nodes. On this basis, this paper uses the graph partitioning theory to build the fog computing's load balancing algorithm based on dynamic graph partitioning. The simulation results show that the framework of the fog computing after Cloud Atomization can build the system network flexibly, and dynamic load balancing mechanism can effectively configure system resources as well as reducing the consumption of node migration brought by system changes.
基金supported by the National Natural Science Foundation of China(61573283)
文摘A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.
文摘In this paper a novel method to generate high-precision and continuously adjustable digital time-delay by utilizing the linear phase of a FIR filter is presented. The generated time-delay can be continuously changed by adjusting the filter weights. The time-delay is pre cise and valid for wide-band, while the computational load is low. The proposed approach can find applications in wide-band digital beamforming, adaptive delay estimation, temporal analy sis of reflected waveform, etc.. In the paper, the basic principle, design steps and simulation re sults are given. Also shown are some typical practical applications.
基金National High Technology Research and Development Program (863 Program) of China (No. 2010AA09Z104)the Fundamental Research Funds for the Central Universities
文摘The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.
基金the National Key Basic Research SpecialFund (No. 19980 2 0 30 6 ) the National NaturalScience Foundation of China (No.198710 47)
文摘Load flow computations are the basis for voltage security assessments in power systems. All of the flow equation solutions must be computed to explore the mechanisms of voltage instability and voltage collapse. Conventional algorithms, such as Newton's methods and its variations, are not very desirable because they can not be easily used to find all of the solutions. This paper investigates homotopy methods which can be used for numerically computing the set of all isolated solutions of multivariate polynomial systems resulting from load flow computations. The results significantly reduce the number of paths being followed.