The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is ...The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.展开更多
基金Supported by the National Natural Science Foundation of China(61333010,61203157)the Fundamental Research Funds for the Central Universities+2 种基金the National High-Tech Research and Development Program of China(2013AA040701)Shanghai Natural Science Foundation Project(15ZR1408900)Shanghai Key Technologies R&D Program Project(13111103800)
文摘The computation burden in the model-based predictive control algorithm is heavy when solving QR optimization with a limited sampling step, especially for a complicated system with large dimension. A fast algorithm is proposed in this paper to solve this problem, in which real-time values are modulated to bit streams to simplify the multiplication. In addition, manipulated variables in the prediction horizon are deduced to the current control horizon approximately by a recursive relation to decrease the dimension of QR optimization. The simulation results demonstrate the feasibility of this fast algorithm for MIMO systems.