期刊文献+
共找到4,130篇文章
< 1 2 207 >
每页显示 20 50 100
A simplified approach to modelling blasts in computational fluid dynamics (CFD)
1
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads computational fluid dynamics Explosions Numerical simulations
下载PDF
COMPUTATIONAL FLUID DYNAMICS(CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL 被引量:4
2
作者 LI Gang ZHOU Ming +2 位作者 WU Bo YE Xia CAI Lan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第2期77-80,共4页
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num... Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them. 展开更多
关键词 Reynoids numbers Slip velocity Drag reduction computational fluid dynamicscfd simulations
下载PDF
Computational Fluid Dynamics(CFD) Analysis and Optimization of Reconstructed Intake System of Cylinder Head Based on Slicing Reverse Method
3
作者 LUO Tong LIAN Zhanghua +1 位作者 CHEN Guihui ZHANG Qiang 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期170-178,共9页
To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system base... To find out and improve the flow characteristics inside the intake system of cylinder head,the application of computational fluid dynamics(CFD)in the evaluation and optimization of the reconstructed intake system based on slicing reverse method was proposed.The flow characteristics were found out through CFD,and the velocity vector field,pressure field and turbulent kinetic energy field for different valve lifts were discussed,which were in good agreement with experimental data,and the quality of reconstruction was evaluated.In order to improve its flow characteristic,an optimization plan was proposed.The results show that the flow characteristics after optimization are obviously improved.The results can provide a reference for the design and optimization of the intake system of cylinder head. 展开更多
关键词 computational fluid dynamics(cfd)analysis cfd optimization INTAKE system SLICING REVERSE METHOD
下载PDF
A Computational Fluid Dynamics (CFD) Analysis of an Undulatory Mechanical Fin Driven by Shape Memory Alloy 被引量:8
4
作者 Yong-Hua Zhang Jian-Hui He +2 位作者 Jie Yang Shi-Wu Zhang Kin Huat Low 《International Journal of Automation and computing》 EI 2006年第4期374-381,共8页
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ... Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength). 展开更多
关键词 computational fluid dynamics cfd undulatory mechanical fin unsteady flow unstructured mesh Shape Memory Alloy (SMA)
下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
5
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 rotating-stream-tray two-phase flow field simulation computational fluid dynamics
下载PDF
Computational fluid dynamics simulations of respiratory airflow in human nasal cavity and its characteristic dimension study 被引量:3
6
作者 Jun Zhang Yingxi Liu +2 位作者 Xiuzhen Sun Shen Yu Chi Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期223-228,共6页
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models... To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity. 展开更多
关键词 Nasal cavity Characteristic dimension Three-dimensional reconstruction Numerical simulation of flowfield computational fluid dynamic Finite element method
下载PDF
Application of computational fluid dynamics simulation for submarine oil spill 被引量:3
7
作者 YANG Zhenglong YU Jianxing +3 位作者 LI Zhigan CHEN Haicheng JIANG Meirong CHEN Xi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第11期104-115,共12页
Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, usin... Computational fluid dynamics (CFD) codes are being increasingly used in the simulation of submarine oil spills. This study focuses on the process of oil spills, from damaged submarine pipes, to the sea surface, using numerical models. The underwater oil spill model is developed, and a description of the governing equations is proposed, along with modifications required for the particalization of the control volume. Available experimental data were introduced to evaluate the validity of the CFD predictions, the results of which proved to be in good agreement with the experimental data. The effects of oil leak rate, leak diameter, current velocity, and oil density are investigated, by the validated CFD model, to estimate the undersea leakage time, the lateral migration distance, and surface diffusion range when the oil reaches the sea surface. Results indicate that the leakage time and lateral migration distance increase with decreasing leak rates and leak diameter, and increase with increasing current velocity and oil density. On the other hand, a large leak diameter, high density, high leak rate, or fast currents result in a greater surface diffusion range. The findings and analysis presented here will provide practical predictions of oil spills, and guidance for emergency rescues. 展开更多
关键词 oil spill computational fluid dynamics cfd oil particles current velocity
下载PDF
The influence of temperature on flow-induced forces on quartz-crystal-microbalance sensors in a Chinese liquor identification electronic-nose: three-dimensional computational fluid dynamics simulation and analysis 被引量:2
8
作者 Qiang LI Yu GU Huatao WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1301-1312,共12页
An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sens... An electronic-nose is developed based on eight quartz-crystal-microbalance (QCM) gas sensors in a sensor box, and is used to detect Chinese liquors at room temperature. Each sensor is a highly-accurate and highly-sensitive oscillator that has experienced airflow disturbances under the condition of varying room temperatures due to unstable flow-induced forces on the sensors surfaces. The three-dimensional (3D) nature of the airflow inside the sensor box and the interactions of the airflow on the sensors surfaces at different temperatures are studied by computational fluid dynamics (CFD) tools. Higher simulation accuracy is achieved by optimizing meshes, meshing the computational domain using a fine unstructural tetrahedron mesh. An optimum temperature, 30 ℃, is obtained by analyzing the distributions of velocity streamlines and the static pressure, as well as the flow-induced forces over time, all of which may be used to improve the identification accuracy of the electronic-nose for achieving stable and repeatable signals by removing the influence of temperature. 展开更多
关键词 computational fluid dynamics (cfd) TEMPERATURE quartz-crystalmicrobalance (QCM) gas sensor ELECTRONIC NOSE IDENTIFICATION accuracy
下载PDF
Computational fluid dynamics simulation of gas-liquid two phases flow in 320 m^3 air-blowing mechanical flotation cell using different turbulence models 被引量:3
9
作者 沈政昌 陈建华 +2 位作者 张谌虎 廖幸锦 李玉琼 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2385-2392,共8页
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in... According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method. 展开更多
关键词 computational fluid dynamics cfd simulation flotation cell gas-liquid two-phases flow
下载PDF
Optimization study of a PEM fuel cell performance using 3D multi-phase computational fluid dynamics model 被引量:2
10
作者 AL-BAGHDADI Maher A.R. Sadiq AL-JANABI Haroun A.K.Shahad 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第2期285-300,共16页
An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell... An optimization study using a comprehensive 3D, multi-phase, non-isothermal model of a PEM (proton exchange membrane) fuel cell that incorporates significant physical processes and key parameters affecting fuel cell performance is presented and discussed in detail. The model accounts for both gas and liquid phase in the same computational domain, and thus allows for the implementation of phase change inside the gas diffusion layers. The model includes the transport of gaseous species, liquid water, protons, energy, and water dissolved in the ion-conducting polymer. Water is assumed to be exchanged among three phases: liquid, vapottr, and dissolved, with equilibrium among these phases being assumed. This model also takes into account convection and diffusion of different species in the channels as well as in the porous gas diffusion layer, heat transfer in the solids as well as in the gases, and electrochemical reactions. The results showed that the present multi-phase model is capable of identifying important parameters for the wetting behaviour of the gas diffusion layers and can be used to identify conditions that might lead to the onset of pore plugging, which has a detrimental effect on the fuel cell performance. This model is used to study the effects of several operating, design, and material parameters on fuel cell performance. Detailed analyses of the fuel cell performance under various operating conditions have been conducted and examined. 展开更多
关键词 optimization PEM fuel cell MULTI-PHASE Water transport cfd computational fluid dynamics
下载PDF
Computational Fluid Dynamics Based Bulbous Bow Optimization Using a Genetic Algorithm 被引量:5
11
作者 Shahid Mahmood Debo Huang 《Journal of Marine Science and Application》 2012年第3期286-294,共9页
Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and eng... Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form ootimization. 展开更多
关键词 bulbous bow genetic algorithm computational fluid dynamics cfd total resistance
下载PDF
Computational fluid dynamics simulation of a novel bioreactor forsophorolipid production 被引量:1
12
作者 Xiaoqiang Jia Lin Qi +4 位作者 Yaguang Zhang Xue Yang Hongna Wang Fanglong Zhao Wenyu Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第6期732-740,共9页
This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)u... This paper describes three-dimensional computational fluid dynamics(CFD) simulations of gas–liquid flow in a novel laboratory-scale bioreactor contained dual ventilation-pipe and double sieve-plate bioreactor(DVDSB)used for sophorolipid(SL) production. To evaluate the role of hydrodynamics in reactor design, the comparisons between conventional fed-batch fermenter and DVDSB on the hydrodynamic behavior are predicted by the CFD methods. Important hydrodynamic parameters of the gas–liquid two-phase system such as the liquid phase velocity field, turbulent kinetic energy and volume-averaged overall and time-averaged local gas holdups were simulated and analyzed in detail. The numerical results were also validated by experimental measurements of overall gas holdups. The yield of sophorolipids was significantly improved to 484 g·L^(-1)with a 320 h fermentation period in the new reactor. 展开更多
关键词 Bioreactors Gas HOLD-UP computational fluid dynamics (cfd)Hydrodynamics Sophorolipid production
下载PDF
Computational simulation of fluid dynamics in a tubular stirred reactor 被引量:7
13
作者 曹晓畅 张廷安 赵秋月 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第2期489-495,共7页
The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame... The flow and concentration fields in a new style tubular stirred reactor were simulated by simulating the fluids dynamics(CFD),in which FLUENT software was used and the standard k-ε model and multiple reference frame(MRF) were adopted. The various values of initial rotating speed and inlet flow rate were adopted. Simulations were validated with experimental residence time distribution(RTD) determination. It is shown that the fluid flow is very turbulent and the flow pattern approaches to the plug flow. The velocity increases from shaft to the end of impeller,and the gradient is enlarged by increasing the rotating speed. Comparison between RTD curves shows that agitation can improve the performance of reactor. As the flow rate increases,the mean residence time decreases proportionally,and the variance of RTD lessens as well. When rotating speed increases to a certain value,the variance of RTD is enlarged by increasing rotating speed,but the mean residence time has no obvious change. 展开更多
关键词 计算流体动力学模拟 搅拌反应器 FLUENT软件 停留时间分布 转速上升 管式 平均滞留时间 进气流量
下载PDF
Optimization of the Internal Circulating Fluidized Bed Using Computational Fluid Dynamics Technology 被引量:2
14
作者 Xiangxi Du Muyun Liu Yanhua Sun 《Fluid Dynamics & Materials Processing》 EI 2022年第2期303-312,共10页
The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.T... The computational fluid dynamics(CFD)technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds(ICFB)based on CFD.The three-dimensional simulation method can study the hydrodynamic properties of the ICFB,and the performance of the fluidized bed is optimized.The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle.Then,through the cross-shaped baffle and funnel-shaped baffle placement,the fluidized bed reaches a coupled optimization.The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance of sewage treatment.The base gap crossshaped baffle can improve the hydraulic conditions of the fluidized bed and reduce the system energy consumption.The cross-shaped baffle and funnel-shaped baffle can perfect the performance of the reactor and effectively strengthen the treatment in the intense aerobic process of industrial sewage. 展开更多
关键词 Internal circulating fluidized bed computational fluid dynamics optimization design INTERNAL
下载PDF
Computational fluid dynamics simulation of formaldehyde emission characteristics and its experimental validation in environment chamber 被引量:2
15
作者 刘志坚 《Journal of Chongqing University》 CAS 2010年第3期124-132,共9页
We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating forma... We investigated the effect of supply air rate and temperature on formaldehyde emission characteristics in an environment chamber.A three-dimensional computational fluid dynamics(CFD) chamber model for simulating formaldehyde emission in twelve different cases was developed for obtaining formaldehyde concentration by the area-weighted average method.Laboratory experiments were conducted in an environment chamber to validate the simulation results of twelve different cases and the formaldehyde concentration was measured by continuous sampling.The results show that there was good agreement between the model prediction and the experimental values within 4.3 difference for each case.The CFD simulation results varied in the range from 0.21 mg/m3 to 0.94 mg/m3,and the measuring results in the range from 0.17 mg/m3 to 0.87 mg/m3.The variation trend of formaldehyde concentration with supply air rate and temperature variation for CFD simulation and experiment measuring was consistent.With the existence of steady formaldehyde emission sources,formaldehyde concentration generally increased with the increase of temperature,and it decreased with the increase of air supply rate.We also provided some reasonable suggestions to reduce formaldehyde concentration and to improve indoor air quality for newly decorated rooms. 展开更多
关键词 formaldehyde concentration environment chamber computational fluid dynamics simulation supply air rate TEMPERATURE
下载PDF
Computational fluid dynamics simulation of Hyperloop pod predicting laminar–turbulent transition 被引量:2
16
作者 Nathalie Nick Yohei Sato 《Railway Engineering Science》 2020年第1期97-111,共15页
Three-dimensional compressible flow simulationswere conducted to develop a Hyperloop pod. Thenovelty is the usage of Gamma transition model, in whichthe transition from laminar to turbulent flow can be predicted.First... Three-dimensional compressible flow simulationswere conducted to develop a Hyperloop pod. Thenovelty is the usage of Gamma transition model, in whichthe transition from laminar to turbulent flow can be predicted.First, a mesh dependency study was undertaken,showing second-order convergence with respect to themesh refinement. Second, an aerodynamic analysis for twodesigns, short and optimized, was conducted with thetraveling speed 125 m/s at the system pressure 0.15 bar.The concept of the short model was to delay the transitionto decrease the frictional drag;meanwhile that of theoptimized design was to minimize the pressure drag bydecreasing the frontal area and introduce the transitionmore toward the front of the pod. The computed resultsshow that the transition of the short model occurred moreon the rear side due to the pod shape, which resulted in 8%smaller frictional drag coefficient than that for the optimizedmodel. The pressure drag for the optimized designwas 24% smaller than that for the short design, half ofwhich is due to the decrease in the frontal area, and theother half is due to the smoothed rear-end shape. The totaldrag for the optimized model was 14% smaller than that forthe short model. Finally, the influence of the systempressure was investigated. As the system pressure and theReynolds number increase, the frictional drag coefficientincreases, and the transition point moves toward the front,which are the typical phenomena observed in the transitionregime. 展开更多
关键词 computational fluid dynamics(cfd) Drag SUBSONIC COMPRESSIBLE flow Hyperloop Laminar-turbulent TRANSITION
下载PDF
NUMERICAL SIMULATION BY COMPUTATIONAL FLUID DYNAMICS AND EXPERIMENTAL STUDY ON STIRRED BIOREACTOR WITH PUNCHED IMPELLER 被引量:1
17
作者 WANG Yu HE Pingting +1 位作者 YE Hong XIN Zhihong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期42-45,共4页
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred... Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value. 展开更多
关键词 Stirred bioreactor with punched impeller computational fluid dynamicscfd)Particle image velocimetry(PIV) Flow field Temperature field
下载PDF
Computational Fluid Dynamics Simulation of Liquid-Phase FCC Diesel Hydrotreating in Tubular Reactor 被引量:1
18
作者 Li Hua Liu Ningqiang +2 位作者 Zeng Zhiyu Zou Ying Wang Jiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期102-110,共9页
The computational fluid dynamics(CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hydrotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were a... The computational fluid dynamics(CFD) code, FLUENT, was used to simulate the liquid-phase FCC diesel hydrotreating tubular reactor with a ceramic membrane tube dispenser. The chemical reaction and reaction heat were added to the model by user-defined function(UDF), showing the distribution of temperature and content of sulfides, nitrides, bicyclic aromatics and monocyclic aromatics in different parts of the reaction bed. When the pressure was 6.5 MPa, the amount of mixing hydrogen was 0.84%(m), the space velocity was 2 h-1 and the inlet temperature was 633 K, the temperature reached a maximum at a height of 0.15 m, and the range of radial temperature reached its maximum(2.5 K) at a height of 0.15 m. It indicated that the proper ratio of height to diameter of catalyst bed in the tubular reactor was 5-6. The increase of inlet temperature, the mixing hydrogen and the decrease of space velocity led to the decrease in the content of bicyclic aromatics, sulfides and nitrides, and the increase in monocyclic aromatics content, while the high temperature increased. The results were in good agreement with experimental data, indicating to the high accuracy of the model. 展开更多
关键词 FCC diesel tubular liquid-phase hydrogenation computational fluid dynamicscfd
下载PDF
Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method
19
作者 Jun LI Ying-wei KANG +3 位作者 Guang-yi CAO Xin-jian ZHU Heng-yong TU Jian LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期961-969,共9页
A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based... A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control. 展开更多
关键词 Direct internal reforming (DIR) Solid oxide fuel cell (SOFC) computational fluid dynamics cfd Numerical simulation
下载PDF
Computational fluid dynamics simulation of gas dispersion in complex facilities using Kit Fox field experiments:Validation and statistical evaluation
20
作者 Narjes Hemati Alam Eslam Kashi Razieh Habibpour 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期412-423,共12页
Gas release and its dispersion is a major concern in chemical industries.In order to manage and mitigate the risk of gas dispersion and its consequences,it is necessary to predict gas dispersion behavior and its conce... Gas release and its dispersion is a major concern in chemical industries.In order to manage and mitigate the risk of gas dispersion and its consequences,it is necessary to predict gas dispersion behavior and its concentration at various locations upon emission.Therefore,models and commercial packages such as Phast and ALOHA have been developed.Computational fluid dynamics(CFD)can be a useful tool to simulate gas dispersion in complex areas and conditions.The validation of the models requires the employment of the experimental data from filed and wind tunnel experiments.It appears that the use of the experimental data to validate the CFD method that only includes certain monitor points and not the entire domain can lead to unreliable results for the intended areas of concern.In this work,some of the trials of the Kit Fox field experiment,which provided a wide-range database for gas dispersion,were simulated by CFD.Various scenarios were considered with different mesh sizes,physical conditions,and types of release.The results of the simulations were surveyed in the whole domain.The data matching each scenario was varied by the influence of the dominant displacement force(wind or diffusivity).Furthermore,the statistical parameters suggested for the heavy gas dispersion showed a dependency on the lower band of gas concentration.Therefore,they should be used with precaution.Finally,the results and computation cost of the simulation could be affected by the chosen scenario,the location of the intended points,and the release type. 展开更多
关键词 Gas dispersion simulation computational fluid dynamics Complex terrain Obstructed flow
下载PDF
上一页 1 2 207 下一页 到第
使用帮助 返回顶部