期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Sheltering effect of punched steel plate sand fences for controlling blown sand hazards along the Golmud-Korla Railway:Field observation and numerical simulation studies 被引量:3
1
作者 ZHANG Kai TIAN Jianjin +2 位作者 QU Jianjun ZHAO Liming LI Sheng 《Journal of Arid Land》 SCIE CSCD 2022年第6期604-619,共16页
Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi... Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences. 展开更多
关键词 punched steel plate sheltering effect field observations computational fluid dynamics numerical simulation windproof efficiency
下载PDF
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
2
作者 LIU Handan WANG Shigang XU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期440-445,共6页
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther... Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application. 展开更多
关键词 Magnetic targeting drug delivery FERROfluidS magnetic nano-particels process modeling HYDROdynamics computational fluid dynamics(CFD) numerical simulation Magnetic resonance imaging
下载PDF
Simulations of vertical jet penetration using a filtered two-fluid model in a gas-solid fluidized bed 被引量:1
3
作者 Shuyan Wang Baoli Shao +5 位作者 Xiangyu Li Jian Zhao Lili Liu Yikun Liu gang Liu Qun Dong 《Particuology》 SCIE EI CAS CSCD 2017年第2期95-104,共10页
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ... The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved. 展开更多
关键词 fluidized bed Vertical jet penetration Filtered model computational fluid dynamics numerical simulation
原文传递
The effects of caudal fin deformation on the hydrodynamics of thunniform swimming under self-propulsion 被引量:2
4
作者 Yi-kun Feng Yu-min Su +1 位作者 Huan-xing Liu Yuan-yuan Su 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1122-1137,共16页
To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform ... To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform kinematics.The 3-D vortices are visualized to reveal the role of the leading-edge vortex(LEV)in the thrust generation.By comparing the swimming velocity of the swimmer with different caudal fin flexure amplitudes fa,it is shown that the acceleration in the starting stage of the swimmer increases with the increase of fa,but its cruising velocity decreases.The results indicate that the caudal fin deformation is beneficial to the fast start but not to the fast cruising of the swimmer.During the entire swimming process,the undulation amplitudes of the lateral velocity and the yawing angular velocity decrease as fa increases.It is found that the formation of an attached LEV on the caudal fin is responsible for generating the low-pressure region on the surface of the caudal fin,which contributes to the thrust.Furthermore,the caudal fin deformation can delay the LEV shedding from the caudal fin,extending the duration of the low pressure on the caudal fin,which will cause the caudal fin to generate a drag-type force over a time period in one swimming cycle and reduce the cruising speed of the swimmer. 展开更多
关键词 computational fluid dynamics(CFD)numerical simulation SELF-PROPULSION caudal fin DEFORMATION
原文传递
Numerical study on morphological characteristics of rotational natural supercavitation by rotational supercavitating evaporator with optimized blade shape 被引量:1
5
作者 Zhi-ying Zheng Qian Li +4 位作者 Lu Wang Li-ming Yao Wei-hua Cai Hui Li Feng-chen Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期468-485,共18页
In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in t... In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in the RSCE for the performance optimization, the blade shapes of different sizes are designed by utilizing the improved calculation method for the blade shape and the validated empirical formulae based on previous two-dimensional numerical simulations, from which the optimized blade shape with the wedge angle of 45° and the design speed of 5 000 r/min is selected. The estimation method for the desalination performance parameters is developed to validate the feasibility of the utilization of the results obtained by the two-dimensional numerical simulations in the design of the three-dimensional blade shape. Three-dimensional numerical simulations are then conducted for the supercavitating flows around the rotational cavitator with the optimized blade shape at different rotational speeds to obtain the morphological characteristics of the rotational natural supercavitation. The results show that the profile of the supercavity tail is concaved toward the inside of the supercavity due to the re-entrant jet. The empirical formulae for estimating the supercavity size with consideration of the rotation are obtained by fitting the data, with the exponents different from those obtained by the previous two-dimensional numerical simulations. The influences of the rotation on the morphological characteristics are analyzed from the perspectives of the tip and hub vortices and the interaction between the supercavity tail and the blade. Further numerical simulation of the supercavitating flow around the rotational cavitator made up by the blades with exit edge of uniform thickness illustrate that the morphological characteristics are also affected by the blade shape. 展开更多
关键词 Rotational natural supercavitation morphological characteristics blade shape computational fluid dynamics(CFD)numerical simulation rotational supercavitating evaporator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部