期刊文献+
共找到502篇文章
< 1 2 26 >
每页显示 20 50 100
Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production 被引量:1
1
作者 Shuaishuai Zhou Jing Li +5 位作者 Kaixiang Pang Chunxi Lu Feng Zhu Congzhen Qiao Yajie Tian Jingwei Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期196-207,共12页
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio... Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process. 展开更多
关键词 computational fluid dynamics Discrete element method Stirred tank LPE process Liquid-particle interactions
下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
2
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
下载PDF
Methodology for Comparing Coupling Algorithms for Fluid-Structure Interaction Problems
3
作者 Jason P. Sheldon Scott T. Miller Jonathan S. Pitt 《World Journal of Mechanics》 2014年第2期54-70,共17页
The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between ... The multi-physics simulation of coupled fluid-structure interaction problems, with disjoint fluid and solid domains, requires one to choose a method for enforcing the fluid-structure coupling at the interface between solid and fluid. While it is common knowledge that the choice of coupling technique can be very problem dependent, there exists no satisfactory coupling comparison methodology that allows for conclusions to be drawn with respect to the comparison of computational cost and solution accuracy for a given scenario. In this work, we develop a computational framework where all aspects of the computation can be held constant, save for the method in which the coupled nature of the fluid-structure equations is enforced. To enable a fair comparison of coupling methods, all simulations presented in this work are implemented within a single numerical framework within the deal.ii [1] finite element library. We have chosen the two-dimensional benchmark test problem of Turek and Hron [2] as an example to examine the relative accuracy of the coupling methods studied;however, the comparison technique is equally applicable to more complex problems. We show that for the specific case considered herein the monolithic approach outperforms partitioned and quasi-direct methods;however, this result is problem dependent and we discuss computational and modeling aspects which may affect other comparison studies. 展开更多
关键词 fluid-Structure Interaction FSI FINITE element method Monolithic coupling Partitioned coupling Dirichlet-Neumann coupling MULTI-PHYSICS
下载PDF
A review of methods,applications and limitations for incorporating fluid flow in the discrete element method 被引量:9
4
作者 Tuo Wang Fengshou Zhang +1 位作者 Jason Furtney Branko Damjanac 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期1005-1024,共20页
The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional ... The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given. 展开更多
关键词 Hydro-mechanical process fluid/discrete element method(DEM) coupling GEOMECHANICS Numerical modeling
下载PDF
Computational fluid dynamics simulations of respiratory airflow in human nasal cavity and its characteristic dimension study 被引量:3
5
作者 Jun Zhang Yingxi Liu +2 位作者 Xiuzhen Sun Shen Yu Chi Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第2期223-228,共6页
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models... To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity. 展开更多
关键词 Nasal cavity Characteristic dimension Three-dimensional reconstruction Numerical simulation of flowfield computational fluid dynamic Finite element method
下载PDF
Stabilization for Equal-Order Polygonal Finite Element Method for High Fluid Velocity and Pressure Gradient 被引量:2
6
作者 T.Vu-Huu C.Le-Thanh +1 位作者 H.Nguyen-Xuan M.Abdel-Wahab 《Computers, Materials & Continua》 SCIE EI 2020年第3期1109-1123,共15页
This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that ... This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system.This technique is constructed by a local pressure projection which is extremely simple,yet effective,to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique.In this research,some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method. 展开更多
关键词 Polygonal finite element method fluid computation stokes equation mixed method local projection
下载PDF
RESEARCH ON SOLID-LIQUID COUPLING DYNAMICSOF PIPE CONVEYING FLUID 被引量:1
7
作者 王世忠 刘玉兰 黄文虎 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第11期0-0,0-0+0-0+0,共7页
On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Sti... On the basis of Hamilton principle. the equation of sonlid-liquid coupling vibration of pipe conveying fluid is deduced. An asymmetrical sonlid-liquid coupling damp matrix and a symmetrical solid-liquid coupling Stiffness matrix are obtained. Using QR method , pipe’s nature frequencies are calculated. The curves of the first four orders of natural frequency-flow velocity of pipe waw given .The influence of flowing velocity ,pressure, solid-liquid coupling damp and solid-liquid coupling stiffness on natural frequency are discussed respectively.The dynamic respondence of the pipes for stepload with different flow velocity are calculated by Newmark method .It is found that,with the flow velocity increased, the nature frequency of the pipes reduced, increased,reduced again and so on. 展开更多
关键词 finite element method pipe conveying fluid solid-fluid coupling vibration
下载PDF
Structural Parameter Analyses on Rotor Airloads with New Type Blade-Tip Based on CFD/CSD Coupling Method
8
作者 Wang Junyi Zhao Qijun Ma Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第6期-,共9页
For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics... For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties. 展开更多
关键词 ROTOR airloads structural parameter computational fluid dynamics(CFD) computational structural dynamics(CSD) loose coupling method
下载PDF
MIXED COMPATIBLE ELEMENT AND MIXED HYBRID INCOMPATIBLE ELEMENT VARIATIONAL METHODS IN DYNAMICS OF VISCOUS BAROTROPIC FLUIDS
9
作者 沈孝明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第6期561-569,共9页
This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress... This paper presents and proves the mixed compatible finite element variationalprinciples in dynamics of viscous barotropic fluids. When the principles are proved, itis found that the compatibility conditions of stress can be naturally satisfied. The gene-rallzed variational principles with mixed hybrid incompatible finite elements are alsopresented and proved, and they can reduce the computation of incompatible elements indynamics of viscous barotropic flows. 展开更多
关键词 mechanics of viscous fluids computational fluid mechanics vari-ational principle finite element method mixed compatible el-ement mixed hybrid incompatible element
下载PDF
CVBEM and FVM Computational Model Comparison for Solving Ideal Fluid Flow in a 90-Degree Bend
10
作者 Colin Bloor Theodore V. Hromadka II +1 位作者 Bryce Wilkins Howard McInvale 《Open Journal of Fluid Dynamics》 2016年第4期430-437,共9页
While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boun... While finite volume methodologies (FVM) have predominated in fluid flow computations, many flow problems, including groundwater models, would benefit from the use of boundary methods, such as the Complex Variable Boundary Element Method (CVBEM). However, to date, there has been no reporting of a comparison of computational results between the FVM and the CVBEM in the assessment of flow field characteristics. In this work, the CVBEM is used to develop a flow field vector outcome of ideal fluid flow in a 90-degree bend which is then compared to the computational results from a finite volume model of the same situation. The focus of the modelling comparison in the current work is flow field trajectory vectors of the fluid flow, with respect to vector magnitude and direction. Such a comparison is necessary to validate the development of flow field vectors from the CVBEM and is of interest to many engineering flow problems, specifically groundwater modelling. Comparison of the CVBEM and FVM flow field trajectory vectors for the target problem of ideal flow in a 90-degree bend shows good agreement between the considered methodologies. 展开更多
关键词 Complex Variable Boundary element method Finite Volume method Ideal fluid Flow 90-Degree Bend computational fluid Dynamics
下载PDF
NUMERICAL SIMULATION OF UNSTEADY-STATE UNDEREXPANDED JET USING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 被引量:3
11
作者 陈二云 李志刚 +3 位作者 马大为 乐贵高 赵改平 任杰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期89-93,共5页
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex... A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet. 展开更多
关键词 jets computational fluid dynamics multiple Mach disks vortex ring discontinuous Galerkin finite element method
下载PDF
Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model 被引量:3
12
作者 Zeshang Dong Jingsong Wang +2 位作者 Haibin Zuo Xuefeng She Qingguo Xue 《Particuology》 SCIE EI CAS CSCD 2017年第3期63-72,共10页
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b... lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center. 展开更多
关键词 Oxygen blast furnace Discrete element method computational fluid dynamics Shaft gas injection Gas-solid flow Pressure field
原文传递
Application of the Hierarchical Functions Expansion Method for the Solution of the Two Dimensional Navier-Stokes Equations for Compressible Fluids in High Velocity
13
作者 Thadeu das Neves Conti Eduardo Lobo Lustosa Cabral Gaianê Sabundjian 《Energy and Power Engineering》 2017年第2期86-99,共14页
This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based ... This work presents a new application for the Hierarchical Function Expansion Method for the solution of the Navier-Stokes equations for compressible fluids in two dimensions and in high velocity. This method is based on the finite elements method using the Petrov-Galerkin formulation, know as SUPG (Streamline Upwind Petrov-Galerkin), applied with the expansion of the variables into hierarchical functions. To test and validate the numerical method proposed as well as the computational program developed simulations are performed for some cases whose theoretical solutions are known. These cases are the following: continuity test, stability and convergence test, temperature step problem, and several oblique shocks. The objective of the last cases is basically to verify the capture of the shock wave by the method developed. The results obtained in the simulations with the proposed method were good both qualitatively and quantitatively when compared with the theoretical solutions. This allows concluding that the objectives of this work are reached. 展开更多
关键词 computational fluid MECHANICS COMPRESSIBLE Flow Finite elements method NAVIER-STOKES EQUATIONS Shock WAVES
下载PDF
A Generic Computational Solution of a Natural Convection Flow past an Infinite Vertical Porous Plate
14
作者 Harouna Naroua Moussa Idi Bachir 《American Journal of Computational Mathematics》 2016年第4期287-297,共12页
A simulation was carried out on an unsteady flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate. A generic computer program using the Galerkin finite element meth... A simulation was carried out on an unsteady flow of a viscous, incompressible and electrically conducting fluid past an infinite vertical porous plate. A generic computer program using the Galerkin finite element method is employed to solve the coupled non-linear differential equations for velocity and temperature fields. The diffusion equation, the energy equation, the momentum equations and other relevant parameters are transformed into interpretable postfix codes. Numerical calculations are carried out on the flow fields both in the presence of cooling and heating of the plate by free convection currents. The effects of the dimensionless parameters, namely, the Prandtl number, the Eckert number, the modified Grashof number, the Schmidt number and the time on the temperature and velocity distributions are discussed. 展开更多
关键词 computer Simulation Generic Software Tool Finite element method Laminar fluid Flow
下载PDF
基于微观流固耦合的超深层致密砂岩气藏应力敏感性分析
15
作者 姚军 王春起 +2 位作者 黄朝琴 周旭 李金龙 《天然气工业》 EI CAS CSCD 北大核心 2024年第5期45-55,共11页
超深层致密砂岩气藏具有强应力敏感性,目前常用的研究方法包括压力脉冲实验法和实时在线CT扫描法两种,压力脉冲实验法不能揭示产生应力敏感性的微观机理,而实时在线CT扫描法也无法模拟深部地层高压、高应力的条件。为解决应力敏感性实... 超深层致密砂岩气藏具有强应力敏感性,目前常用的研究方法包括压力脉冲实验法和实时在线CT扫描法两种,压力脉冲实验法不能揭示产生应力敏感性的微观机理,而实时在线CT扫描法也无法模拟深部地层高压、高应力的条件。为解决应力敏感性实验研究的不足,基于离散单元法与管道网络模型建立了微观流固耦合算法,编制了模拟器,并对模拟器力学计算和流固耦合模块的正确性进行了验证,分析了应力大小、加载方向和孔隙压力对岩心渗透率的影响,最后从微观上揭示了超深层致密砂岩气藏的应力敏感性机理。研究结果表明:①应力通过增加与之垂直方向上喉道两侧的法向压力,减小喉道的水力半径,进而降低储层的渗透率;②较高的孔隙压力能够阻碍岩石颗粒在应力作用下的移动,从而减缓了孔隙和喉道的变形,使模型保持较高的渗透率;③致密砂岩气藏的渗透率受到应力和地层压力的共同控制,并且具有各向异性,在垂直于最小主应力方向上形成渗透率较大的优势通道;④异常高压阻碍了地应力的压实作用,有利于保护储层孔隙,使地层有较好的储集性能和较高的渗透率。结论认为,根据离散元法结合孔隙网络模型建立的流固耦合方法可为理解超深层致密砂岩应力敏感性提供理论参考,并为超深层致密砂岩气藏的科学高效开发提供指导。 展开更多
关键词 超深层 致密砂岩气藏 离散元法 流固耦合 渗透率 应力敏感性 数值模拟
下载PDF
基于CFD-DEM耦合的梯级溜槽的设计与分析
16
作者 孙晓霞 胡枫 孟文俊 《中国工程机械学报》 北大核心 2024年第5期652-656,661,共6页
针对传统物料转运过程中溜槽和输送带磨损严重、出口处粉尘浓度过高的问题,建立含臂架的梯级溜槽几何模型,采用基于计算流体力学与离散单元法(CFD-DEM)耦合的数值模拟方法,分析了臂架对转运溜槽的磨损以及对其出口处粉尘排放浓度的影响... 针对传统物料转运过程中溜槽和输送带磨损严重、出口处粉尘浓度过高的问题,建立含臂架的梯级溜槽几何模型,采用基于计算流体力学与离散单元法(CFD-DEM)耦合的数值模拟方法,分析了臂架对转运溜槽的磨损以及对其出口处粉尘排放浓度的影响。仿真结果表明:含臂架的梯级溜槽可以有效控制物料流的速度和方向,降低对溜槽内表面的冲击磨损,降低出口处的粉尘量。 展开更多
关键词 转运溜槽 计算流体力学与离散单元法(CFD-DEM)耦合 粉尘
下载PDF
氦冷固态包层氚增殖球床气体和粉末流动特性的数值研究
17
作者 王开松 刘明宗 汪键 《核聚变与等离子体物理》 CAS CSCD 北大核心 2024年第2期163-169,共7页
基于计算流体力学和离散元耦合分析,研究了氦冷固态增殖包层球床中吹扫氦气的速度分布和破碎的正硅酸锂粉末速度随时间的变化及粉末数量随氦气入口流速变化。模拟结果表明,在吹扫氦气流动方向上,用入口流速归一化的氦气速度分布与入口... 基于计算流体力学和离散元耦合分析,研究了氦冷固态增殖包层球床中吹扫氦气的速度分布和破碎的正硅酸锂粉末速度随时间的变化及粉末数量随氦气入口流速变化。模拟结果表明,在吹扫氦气流动方向上,用入口流速归一化的氦气速度分布与入口流速无关,在靠近球床边缘速度变化较大,在球床中部速度变化较小;用入口流速归一化的粉末平均速度与入口流速关系不大,会随吹扫时间逐渐趋于稳定;对小粒径粉末,吹扫气体流速越大,越容易被吹出球床,对大粒径粉末,因其本身体积过大,易在球床中形成堵塞。 展开更多
关键词 氦冷包层 正硅酸锂球床 计算流体力学 离散单元法
下载PDF
多级水力压裂应力阴影效应的数值分析 被引量:1
18
作者 宋进鑫 郁航 +2 位作者 王雅亭 陈佳亮 鞠杨 《矿业科学学报》 CSCD 北大核心 2024年第3期475-482,共8页
多级水力压裂作为储层改造的主要技术手段,广泛用于提高致密油气藏的气体产量。裂缝在扩展过程中的应力阴影效应对于有效连通储层的天然裂缝并形成有利于油、气体流动的复杂裂缝网络至关重要。本研究采用了自适应的有限元-离散元方法,... 多级水力压裂作为储层改造的主要技术手段,广泛用于提高致密油气藏的气体产量。裂缝在扩展过程中的应力阴影效应对于有效连通储层的天然裂缝并形成有利于油、气体流动的复杂裂缝网络至关重要。本研究采用了自适应的有限元-离散元方法,通过改进网格自动细化和识别多个裂缝扩展模拟含天然裂缝储层的多级水力压裂。数值模型中考虑了水力裂缝、天然裂缝和微观孔隙结构的相互作用,整合了非线性的Carter滤失模型来描述多级压裂过程中压裂液的滤失效应。引入了理想平行板流的支撑剂运输方程,并采用了达西定律来分析裂缝网络中的流体渗透效应。通过比较无裂缝均质模型和天然裂缝模型的裂缝网络和流体流动,评估了天然裂缝对多级压裂裂缝行为和气体产量的影响。研究为确定和优化致密气藏中压裂簇间距提供了一种新的方法。 展开更多
关键词 自适应有限元-离散元法 应力阴影效应 流体力学耦合 压裂液滤失效应
下载PDF
IMPROVED ALGORITHM FOR CFD/CSD COUPLED SYSTEM DESIGN AND CALCULATION 被引量:4
19
作者 安效民 徐敏 陈士橹 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期162-169,共8页
The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An... The data information transfer and time marching strategies between computational fluid dynamics (CFD) and computational structural dynamics (CSD) play crucial roles on the aeroelastic analysis in a time domain. An improved CFD/CSD coupled system is designed, including an interpolation method and an improved loosely coupled algorithm. The interpolation method based on boundary element method (BEM) is developed to transfer aerodynamic loads and structural displacements between CFD and CSD grid systems, it can be universally used in fluid structural interaction solution by keeping energy conservation. The improved loosely coupled algo-rithm is designed, thus it improves the computational accuracy and efficiency. The new interface is performed on the two-dimensional (2-D) extrapolation and the aeroelastie response of AGARD445.6 wing. Results show that the improved interface has a superior accuracy. 展开更多
关键词 computational fluid dynamics boundary element method data transfer fluid and structure interaction aeroelasticity
下载PDF
恶劣海况下船舶砰击颤振响应特性数值计算与试验研究
20
作者 张涵韬 王一雯 +2 位作者 孔祥韶 郑成 吴卫国 《中国舰船研究》 CSCD 北大核心 2024年第2期148-158,共11页
[目的]针对恶劣海况下船舶所受砰击颤振响应现象,探究船舶非线性波浪载荷与瞬态高幅值砰击载荷的耦合作用。[方法]采用计算流体动力学与有限元方法(CFD-FEM)相结合的双向流固耦合方法对S175集装箱船进行数值仿真计算,并与试验结果及切... [目的]针对恶劣海况下船舶所受砰击颤振响应现象,探究船舶非线性波浪载荷与瞬态高幅值砰击载荷的耦合作用。[方法]采用计算流体动力学与有限元方法(CFD-FEM)相结合的双向流固耦合方法对S175集装箱船进行数值仿真计算,并与试验结果及切片理论计算结果进行对比验证;采用分段变截面弹性龙骨梁模型开展船舶的砰击颤振特性模型试验,基于CFD-FEM双向流固耦合方法开展船艏砰击载荷及高频非线性砰击颤振响应特性分析,并与模型试验结果进行对比验证。[结果]结果显示,波浪砰击载荷对船艏颤振响应的影响不可忽视,6级海况下由砰击颤振诱发的二阶高频成分分量占低频波浪弯矩的59.86%。[结论]采用基于CFD-FEM的双向流固耦合方法可准确计算船首砰击颤振响应;在高海况下船舶所受非线性波浪载荷及结构动态响应易受船首瞬态砰击载荷的影响,在船舶结构设计与安全评估中需考虑高频砰击颤振的情况。 展开更多
关键词 极端海况 砰击颤振响应 计算流体动力学 有限元方法 双向流固耦合方法
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部