期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
What can computational modeling offer for studying the Ca^(2+) dysregulation in Alzheimer's disease:current research and future directions 被引量:2
1
作者 Jingyi Liang Don Kulasiri 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1156-1158,共3页
Ca^2+ dysregulation is an early event observed in Alzheimer's disease(AD) patients preceding the presence of its clinical symptoms.Dysregulation of neuronalCa^2+ will cause synaptic loss and neuronal death,eventu... Ca^2+ dysregulation is an early event observed in Alzheimer's disease(AD) patients preceding the presence of its clinical symptoms.Dysregulation of neuronalCa^2+ will cause synaptic loss and neuronal death,eventually leading to memory impairments and cognitive decline.Treatments targetingCa^2+ signaling pathways are potential therapeutic strategies against AD.The complicated interactions make it challenging and expensive to study the underlying mechanisms as to how Ca^2+ signaling contributes to the pathogenesis of AD.Computational modeling offers new opportunities to study the signaling pathway and test proposed mechanisms.In this mini-review,we present some computational approaches that have been used to study Ca^2+ dysregulation of AD by simulating Ca^2+signaling at various levels.We also pointed out the future directions that computational modeling can be done in studying the Ca^2+ dysregulation in AD. 展开更多
关键词 Alzheimer's disease amyloid-beta Ca^2+ hypothesis Ca^2+ dysregulation computational modeling computational neuroscience
下载PDF
A review of computational modeling and deep brain stimulation:applications to Parkinson’s disease 被引量:2
2
作者 Ying YU Xiaomin WANG +1 位作者 Qishao WANG Qingyun WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第12期1747-1768,共22页
Biophysical computational models are complementary to experiments and theories,providing powerful tools for the study of neurological diseases.The focus of this review is the dynamic modeling and control strategies of... Biophysical computational models are complementary to experiments and theories,providing powerful tools for the study of neurological diseases.The focus of this review is the dynamic modeling and control strategies of Parkinson’s disease(PD).In previous studies,the development of parkinsonian network dynamics modeling has made great progress.Modeling mainly focuses on the cortex-thalamus-basal ganglia(CTBG)circuit and its sub-circuits,which helps to explore the dynamic behavior of the parkinsonian network,such as synchronization.Deep brain stimulation(DBS)is an effective strategy for the treatment of PD.At present,many studies are based on the side effects of the DBS.However,the translation from modeling results to clinical disease mitigation therapy still faces huge challenges.Here,we introduce the progress of DBS improvement.Its specific purpose is to develop novel DBS treatment methods,optimize the treatment effect of DBS for each patient,and focus on the study in closed-loop DBS.Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment. 展开更多
关键词 computational model deep brain stimulation(DBS) Parkinson’s disease(PD) basal ganglia(BG)
下载PDF
Current progress of computational modeling for guiding clinical atrial fibrillation ablation 被引量:1
3
作者 Zhenghong WU Yunlong LIU +3 位作者 Lv TONG Diandian DONG Dongdong DENG Ling XIA 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第10期805-817,共13页
Atrial fibrillation(AF)is one of the most common arrhythmias,associated with high morbidity,mortality,and healthcare costs,and it places a significant burden on both individuals and society.Anti-arrhythmic drugs are t... Atrial fibrillation(AF)is one of the most common arrhythmias,associated with high morbidity,mortality,and healthcare costs,and it places a significant burden on both individuals and society.Anti-arrhythmic drugs are the most commonly used strategy for treating AF.However,drug therapy faces challenges because of its limited efficacy and potential side effects.Catheter ablation is widely used as an alternative treatment for AF.Nevertheless,because the mechanism of AF is not fully understood,the recurrence rate after ablation remains high.In addition,the outcomes of ablation can vary significantly between medical institutions and patients,especially for persistent AF.Therefore,the issue of which ablation strategy is optimal is still far from settled.Computational modeling has the advantages of repeatable operation,low cost,freedom from risk,and complete control,and is a useful tool for not only predicting the results of different ablation strategies on the same model but also finding optimal personalized ablation targets for clinical reference and even guidance.This review summarizes three-dimensional computational modeling simulations of catheter ablation for AF,from the early-stage attempts such as Maze III or circumferential pulmonary vein isolation to the latest advances based on personalized substrate-guided ablation.Finally,we summarize current developments and challenges and provide our perspectives and suggestions for future directions. 展开更多
关键词 Atrial fibrillation Catheter ablation computational modeling Atrial fibrosis
原文传递
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
4
作者 Wen-Han Zhu Wei Sun +2 位作者 Xiong-Kuo Min Guang-Tao Zhai Xiao-Kang Yang 《International Journal of Automation and computing》 EI CSCD 2021年第2期204-218,共15页
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval... Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures. 展开更多
关键词 Image quality assessment(IQA) no-reference(NR) structural computational modeling human visual system visual feature extraction
原文传递
Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm 被引量:3
5
作者 Zhi-qiang Zhang Li-jian Xu +3 位作者 Rong Liu Xiao-sheng Liu Bing-Zhao Fu-you Liang 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第3期510-522,共13页
The importance of properly treating boundary conditions (BCs) in numerical simulation of hemodynamics in intracranial aneurysm (IA) has been increasingly recognized. In this study, we constructed three types of comput... The importance of properly treating boundary conditions (BCs) in numerical simulation of hemodynamics in intracranial aneurysm (IA) has been increasingly recognized. In this study, we constructed three types of computational model for each IA to investigate how the outcome of numerical simulation is affected by the treatment of BCs. The first type of model (i.e., Type-A model) was obtained by applying 3-D hemodynamic modeling to the entire cerebral arterial network, with its solution being taken as the reference for evaluating the performance of the other two types of model (i.e., Type-B and Type-C models) in which 3-D modeling was confined to the aneurysm region. In addition, patient-specific 1-D models of the cerebral arterial network were developed to provide hemodynamic information for setting the inflow/outflow BCs of the 3-D models. Numerical tests on three IAs revealed that prescribing the outflow BCs of a localized 3-D aneurysm model based on 1-D model-simulated outflow division (i.e., Type-B model) instead of imposing the free outflow BC on all outlets (i.e., Type-C model) helped to improve the fidelity of the simulation of intra-aneurysmal hemodynamics, but could not guarantee a complete reproduction of the reference solution obtained by the Type-A model. Moreover, it was found that the outcome of hemodynamic simulation was more sensitive to the treatment of BCs when an aneurysm was located at arterial bifurcation rather than sidewall. These findings highlight the importance of taking into account systemic cerebroarterial hemodynamics in computational modeling of hemodynamics in IAs, especially those located at bifurcations. 展开更多
关键词 Intracranial aneurysm systemic cerebroarterial hemodynamics boundary conditions computational model
原文传递
Flow Field and Temperature Field in GaN-MOCVD Reactor Based on Computational Fluid Dynamics Modeling 被引量:1
6
作者 梅书哲 王权 +8 位作者 郝美兰 徐健凯 肖红领 冯春 姜丽娟 王晓亮 刘峰奇 徐现刚 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第9期82-86,共5页
Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform perfor... Metal organic chenlical vapor deposition (AIOCVD) growth systems arc one of the. main types of equipment used for growing single crystal materials, such as GaN. To obtain fihn epitaxial materials with uniform performanee, the flow field and ternperature field in a GaN-MOCVD reactor are investigated by modeling and simulating. To make the simulation results more consistent with the actual situation, the gases in the reactor are considered to be compressible, making it possible to investigate the distributions of gas density and pressure in the reactor. The computational fluid dynamics method is used to stud,v the effects of inlet gas flow velocity, pressure in the reactor, rotational speed of graphite susceptor, and gases used in the growth, which has great guiding~ significance for the growth of GaN fihn materials. 展开更多
关键词 MOCVD Flow Field and Temperature Field in GaN-MOCVD Reactor Based on computational Fluid Dynamics modeling GAN
下载PDF
NUMERICAL MODELING OF DUCTILE CRACK EXTENSION USING COMPUTATIONAL CELL ELEMENTS FOR WELDED JOINTS
7
作者 H Y Jing, L.X. Huo and Y. F. Zhang(Tianjin University, Tianjin 300072, China)F. Mnami(Osaka Univeristy, Osaka, Japan) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第6期0-0,0-0+0,共5页
A 3-D computationalframework was suggested to model stable growth of a macroscopic crack under model I condition. The Gurson-Tverpaaof dilatant plasticity model for voided materials describes the damage process. Fixed... A 3-D computationalframework was suggested to model stable growth of a macroscopic crack under model I condition. The Gurson-Tverpaaof dilatant plasticity model for voided materials describes the damage process. Fixed-sized, computational cell elements (containing voids) defined over a thin layer at the cmck plane simulate the ductile crack extension. Outside of this layer, the material remains undamaged by the void growth. The micro-mechanics parumeters controlling cmck growth are the thickness Of computational cell layen D, and the initial void porosity, fo. These parameters are calculated through analyses of ductile tearing to match R-curve obtained from testing of deep notch bend specimens for welded joints. The R-curve for the double edge notched tension specimens is eNctively predicted using these pammeters.The predicted R-curve gives a good agreement with the expemment results. 展开更多
关键词 ductile crack growth R-CURVE computational cell model
下载PDF
Investigation of pore geometry influence on fluid flow in heterogeneous porous media:A pore-scale study 被引量:2
8
作者 Ramin Soltanmohammadi Shohreh Iraji +3 位作者 Tales Rodrigues de Almeida Mateus Basso Eddy Ruidiaz Munoz Alexandre Campane Vidal 《Energy Geoscience》 EI 2024年第1期72-88,共17页
Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing ex... Brazilian pre-salt reservoirs are renowned for their intricate pore networks and vuggy nature,posing significant challenges in modeling and simulating fluid flow within these carbonate reservoirs.Despite possessing excellent petrophysical properties,such as high porosity and permeability,these reservoirs typically exhibit a notably low recovery factor,sometimes falling below 10%.Previous research has indicated that various enhanced oil recovery(EOR)methods,such as water alternating gas(WAG),can substantially augment the recovery factor in pre-salt reservoirs,resulting in improvements of up to 20%.Nevertheless,the fluid flow mechanism within Brazilian carbonate reservoirs,characterized by complex pore geometry,remains unclear.Our study examines the behavior of fluid flow in a similar heterogeneous porous material,utilizing a plug sample obtained from a vugular segment of a Brazilian stromatolite outcrop,known to share analogies with certain pre-salt reservoirs.We conducted single-phase and multi-phase core flooding experiments,complemented by medical-CT scanning,to generate flow streamlines and evaluate the efficiency of water flooding.Subsequently,micro-CT scanning of the core sample was performed,and two cross-sections from horizontal and vertical plates were constructed.These cross-sections were then employed as geometries in a numerical simulator,enabling us to investigate the impact of pore geometry on fluid flow.Analysis of the pore-scale modeling and experimental data unveiled that the presence of dead-end pores and vugs results in a significant portion of the fluid remaining stagnant within these regions.Consequently,the injected fluid exhibits channeling-like behavior,leading to rapid breakthrough and low areal swept efficiency.Additionally,the numerical simulation results demonstrated that,irrespective of the size of the dead-end regions,the pressure variation within the dead-end vugs and pores is negligible.Despite the stromatolite's favorable petrophysical properties,including relatively high porosity and permeability,as well as the presence of interconnected large vugs,the recovery factor during water flooding remained low due to early breakthrough.These findings align with field data obtained from pre-salt reservoirs,providing an explanation for the observed low recovery factor during water flooding in such reservoirs. 展开更多
关键词 Pore-scale modeling Pore geometry Flow streamlines computational modeling Digital rock analysis
下载PDF
Computing Power Network:A Survey 被引量:1
9
作者 Sun Yukun Lei Bo +4 位作者 Liu Junlin Huang Haonan Zhang Xing Peng Jing Wang Wenbo 《China Communications》 SCIE CSCD 2024年第9期109-145,共37页
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these... With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well. 展开更多
关键词 computing power modeling computing power network computing power scheduling information awareness network forwarding
下载PDF
Numerical Simulation of Blood Flow in Aorta with Dilation:A Comparison between Laminar and LES Modeling Methods 被引量:1
10
作者 Lijian Xu Tianyang Yang +3 位作者 Lekang Yin Ye Kong Yuri Vassilevski Fuyou Liang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期509-526,共18页
Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Althoug... Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed,the majority of existing computational model studies adopted the laminar flow assumption(LFA)in the treatment of sub-grid flow variables.So far,it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation.In the present study,we addressed the issue in the context of a specific aortopathy,namely aortic dilation,which is usually accompanied by disturbed flow patterns.Three patient-specific aortas with treated/untreated dilation of the ascending segment were investigated,and their geometrical models were reconstructed from computed tomography angiographic images,with the boundary conditions being prescribed based on flow velocity information measured in vivo with the phase contrast magnetic resonance imaging technique.For the modeling of blood flow,apart from the traditional LFA-based method in which sub-grid flow dynamics is ignored,the large eddy simulation(LES)method capable of incorporating the dissipative energy loss induced by turbulent eddies at the sub-grid level,was adopted and taken as a reference for examining the performance of the LFA-based method.Obtained results showed that the simulated large-scale flow patterns with the two methods had high similarity,both agreeing well with in vivo measurements,although locally large between-method discrepancies in computed hemodynamic quantities existed in regions with high intensity of flow turbulence.Quantitatively,a switch from the LES to the LFAbased modeling method led to mild(<6%)changes in computed space-averaged wall shear stress metrics(i.e.,SA-TAWSS,SA-OSI)in the ascending aortic segment where intensive vortex evolution accompanied by high statistical Reynolds stress was observed.In addition,comparisons among the three aortas revealed that the treatment status of aortic dilation or the concomitant presence of aortic valve disease,despite its remarkable influence on flow patterns in the ascending aortic segment,did not significantly affect the degrees of discrepancies between the two modeling methods in predicting SA-TAWSS and SA-OSI.These findings suggest that aortic dilation per se does not induce strong flow turbulence that substantially negates the validity of LFA-based modeling,especially in simulating macro-scale hemodynamic features. 展开更多
关键词 Blood flow aortic dilation computational modeling turbulence laminar flow assumption large eddy simulation
下载PDF
Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
11
作者 Xingzi Yang Wei Gao +1 位作者 Xiaodu Wang Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1299-1313,共15页
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa... The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process. 展开更多
关键词 Bioinspired nanocomposite computational model machine learning finite element material interface
下载PDF
Computational implementation of a GIS developed tool for prediction of dynamic ground movement and deformation due to underground extraction sequence 被引量:3
12
作者 Yue Cai Yujing Jiang +1 位作者 Baoguo Liu Ibrahim Djamaluddin 《International Journal of Coal Science & Technology》 EI 2016年第4期379-398,共20页
In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational meth... In the last century, there has been a significant development in the evaluation of methods to predict ground movement due to underground extraction. Some remarkable developments in three-dimensional computational methods have been supported in civil engineering, subsidence engineering and mining engineering practice. However, ground movement problem due to mining extraction sequence is effectively four dimensional (4D). A rational prediction is getting more and more important for long-term underground mining planning. Hence, computer-based analytical methods that realistically simulate spatially distributed time-dependent ground movement process are needed for the reliable long-term underground mining planning to minimize the surface environmental damages. In this research, a new computational system is developed to simulate four-dimensional (4D) ground movement by combining a stochastic medium theory, Knothe time-delay model and geographic information system (GIS) technology. All the calculations are implemented by a computational program, in which the components of GIS are used to fulfill the spatial-temporal analysis model. In this paper a tight coupling strategy based on component object model of GIS technology is used to overcome the problems of complex three-dimensional extraction model and spatial data integration. Moreover, the implementation of computational of the interfaces of the developed tool is described. The GIS based developed tool is validated by two study cases. The developed computational tool and models are achieved within the GIS system so the effective and efficient calculation methodology can be obtained, so the simulation problems of 4D ground movement due to underground mining extraction sequence can be solved by implementation of the developed tool in GIS. 展开更多
关键词 computational model Geographical information system - Component object model - Complex mining geometry Ground deformation Surface subsidence
下载PDF
An In Vivo Experimental Validation of a Computational Model of Human Foot 被引量:1
13
作者 Christopher J.Nester David Howard 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期387-397,共11页
Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis proce... Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results. 展开更多
关键词 human foot computational model plantar pressure
下载PDF
CFD modeling and laboratory studies of dust cleaning efficacy of an efficient four stage non-clogging impingement filter for flooded-bed dust scrubbers 被引量:1
14
作者 Ashish Ranjan Kumar Neeraj Gupta Steven Schafrik 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期211-219,共9页
Fibrous-type flters are used to capture dust particles in mining and other occupations where personnel are exposed for prolonged periods.Dust cleansing devices including fooded-bed dust scrubbers use these mesh-type m... Fibrous-type flters are used to capture dust particles in mining and other occupations where personnel are exposed for prolonged periods.Dust cleansing devices including fooded-bed dust scrubbers use these mesh-type multi-layered flters.These flters trap dust particles efciently on their surface and inside their mesh.However,their continued operation leads to dust build-up and clogging.This results in increased resistance of the flter and lowered airfow rate through the scrubber.This could potentially enhance the exposure of the miners.A non-clogging self-cleaning impingement screen type dust flter was designed by the authors for use in mining and industrial dust cleansing applications.The flter guides dirt-laden air through rapidly turning paths which forces it to shed heavier particles.The particles impact one of the impermeable solid metallic flter surfaces and are removed from the airstream.A full cone water spray installed upstream prevents any surface buildup of dust.This paper summaried the computer models generated to show the flter operations and laboratory experiments including optical particle counting to establish the cleaning efciency. 展开更多
关键词 Dust flter computational fuid dynamics modeling Iso-kinetic sampling Optical particle counting Flooded-bed dust scrubber
下载PDF
Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers 被引量:3
15
作者 Arabzadeh Jarkani Soroush Khoshdast Hamid +1 位作者 Shariat Elaheh Sam Abbas 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期123-127,共5页
This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, an... This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing. 展开更多
关键词 Hydraulic classifier modeling computational fluid dynamic Cut size
下载PDF
Evidence of Dual Scale Porous Mechanisms During Fluid Migration in Hardwood Species (Ⅱ) A Dual Scale Computational Model to Describe the Experimental Results
16
作者 Patrick PERR 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第6期783-791,共9页
The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see... The second part of this paper is devoted to the computational modelling of transient water migration in hardwood. During re-saturation, the moisture content, measured during the process by using X-ray attenuation (see part 1 of this paper), increases quickly very close to the cavity, but requires a very long time for the remaining part of the sample to absorb the moisture in wetting. For this configuration and this material, the macroscopic approach fails. Consequently, a dual-porosity approach is proposed. The computational domain uses a 2-D axisymmetric configuration for which the axial coordinate represents the macroscopic longitudinal direction of the sample whereas the radial coordinate allows the slow migration from each active vessel towards the fibre zone to be considered. The latter is a microscopic space variable. The moisture content field evolution depicts clearly the dual scale mechanisms:a very fast longitudinal migration in the vessel followed by a slow migration from the vessel towards the fibre zone.The macroscopic moisture content field resulting from this dual scale mechanism is in quite good agreement with the experimental data. 展开更多
关键词 fluid migration DUAL-POROSITY computational model HARDWOOD VESSEL FIBRE
下载PDF
Computational modelling of magnesium degradation in simulated body fluid under physiological conditions
17
作者 Berit Zeller-Plumhoff Tamadur AlBaraghtheh +1 位作者 Daniel Höche Regine Willumeit-Römer 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期965-978,共14页
Magnesium alloys are highly attractive for the use as temporary implant materials, due to their high biocompatibility and biodegradability.However, the prediction of the degradation rate of the implants is difficult, ... Magnesium alloys are highly attractive for the use as temporary implant materials, due to their high biocompatibility and biodegradability.However, the prediction of the degradation rate of the implants is difficult, therefore, a large number of experiments are required. Computational modelling can aid in enabling the predictability, if sufficiently accurate models can be established. This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects. The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously. Additionally, the formation and precipitation of relevant degradation products on the sample surface is modelled, based on the ionic composition of simulated body fluid. The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07). However, the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs. NRMSE=1.03 for magnesium). This indicates that the implementation of precipitate formation may need further developments. The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model. Overall, the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation. 展开更多
关键词 BIODEGRADATION MAGNESIUM computational modelling CORROSION Uncertainty quantification KRIGING
下载PDF
Computational model investigating the effect of magnetic field on neural–astrocyte microcircuit
18
作者 Li-Cong Li Jin Zhou +4 位作者 Hong-Ji Sun Peng Xiong Hong-Rui Wang Xiu-Ling Liu Chang-Yong Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期711-720,共10页
Extremely low-frequency magnetic field is widely used as a noninvasive stimulation method in clinical practice and basic research. Electrical field induced from magnetic pulse can decrease or increase neuronal electri... Extremely low-frequency magnetic field is widely used as a noninvasive stimulation method in clinical practice and basic research. Electrical field induced from magnetic pulse can decrease or increase neuronal electrical activity. However, the cellular mechanism underlying the effects of magnetic field is not clear from experimental data. Recent studies have demonstrated that "non-neuronal" cells, especially astrocytes, may be the potential effector for transcranial magnetic stimulation(TMS). In the present study, we implemented a neural–astrocyte microcircuit computational model based on hippocampal architecture to investigate the biological effects of different magnetic field frequencies on cells. The purpose of the present study is to elucidate the main influencing factors of MS to allow a better understanding of its mechanisms.Our model reproduced the basic characteristics of the neuron and astrocyte response to different magnetic stimulation. The results predict that interneurons with lower firing thresholds were more active in magnetic fields by contrast to pyramidal neurons. And the synaptic coupling strength between the connected neurons may be one of the critical factor to affect the effect of magnetic field on cells. In addition, the simulations show that astrocytes can decrease or increase slow inward currents(SICs) to finely tune neuronal excitation, which suggests their key role in excitatory–inhibitory balance. The interaction between neurons and astrocytes may represent a novel target for effective therapeutic strategies involving magnetic stimulation. 展开更多
关键词 magnetic stimulation neural–astrocyte microcircuit excitatory and inhibitory balance computational model
下载PDF
A Computational Model for Pedestrian Level Wind Environment Around Tall Buildings
19
作者 祝兵 《Journal of Modern Transportation》 1999年第1期56-64,共9页
A computational model has been developed for the simulation of pedestrian level wind environment around tall buildings by coupling the numerical simulation of the full scale site and meteorological station materials... A computational model has been developed for the simulation of pedestrian level wind environment around tall buildings by coupling the numerical simulation of the full scale site and meteorological station materials. In the first step, the hybrid/mixed finite element method is employed to solve the two dimensional Navier Stokes equation for the flow field around tall buildings, in view of the influence of fluctuating wind, the flow field is revised with the effective wind velocity. The velocity ratio is defined in order to relate numerical wind velocity to oncoming reference wind velocity. In the second step, the frequency occurred discomfort wind velocity as a suitable criterion is calculated by use of the coupling between the numerical wind velocity and the wind velocity at the nearest meteorological station. The prediction accuracy of the wind environment simulation by use of the computation model will be discussed. Using the available wind data at the nearest meteorological station as well as the established criteria of wind discomfort, the frequency of wind discomfort can be predicted. A numerical example is given to illustrate the application of the proposed method. 展开更多
关键词 computational model wind environment tall building
下载PDF
Modeling the Social Reinforcement of Misinformation Dissemination on Social Media
20
作者 Ashleigh T. Aston 《Journal of Behavioral and Brain Science》 CAS 2022年第11期533-547,共15页
Despite the salience of misinformation and its consequences, there still lies a tremendous gap in research on the broader tendencies in collective cognition that compels individuals to spread misinformation so excessi... Despite the salience of misinformation and its consequences, there still lies a tremendous gap in research on the broader tendencies in collective cognition that compels individuals to spread misinformation so excessively. This study examined social learning as an antecedent of engaging with misinformation online. Using data released by Twitter for academic research in 2018, Tweets that included URL news links of both known misinformation and reliable domains were analyzed. Lindström’s computational reinforcement learning model was adapted as an expression of social learning, where a Twitter user’s posting frequency of news links is dependent on the relative engagement they receive in consequence. The research found that those who shared misinformation were highly sensitive to social reward. Inflation of positive social feedback was associated with a decrease in posting latency, indicating that users that posted misinformation were strongly influenced by social learning. However, the posting frequency of authentic news sharers remained fixed, even after receiving an increase in relative and absolute engagement. The results identified social learning is a contributor to the spread of misinformation online. In addition, behavior driven by social validation suggests a positive correlation between posting frequency, gratification received from posting, and a growing mental health dependency on social media. Developing interventions for spreading misinformation online may profit by assessing which online environments amplify social learning, particularly the conditions under which misinformation proliferates. 展开更多
关键词 Social Reinforcement Learning Misinformation Online computational Models of Cognition
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部