Background:Lawsonia inermis has been widely reported to be used as an herbal treatment for Malaria.However,despite several experimental studies about its antimalarial activities,the approach through which the herbal p...Background:Lawsonia inermis has been widely reported to be used as an herbal treatment for Malaria.However,despite several experimental studies about its antimalarial activities,the approach through which the herbal plant suppresses plasmodium infection is yet to be found.Consequently,this study uses computational approaches to understand the biological targets and pathways involved in the antiplasmodial activities of Lawsonia inermis compounds.Methods:The Gas Chromatography-Mass Spectrometry technique identified the phytocompounds present in the herbal plant.GeneCards,OMIM,and NCBI databases were explored to collate target proteins for further network pharmacology analysis.The phytocompounds were subjected to Absorption,Distribution,Metabolism,Excretion and Toxicity(ADMET)and druglikeness analysis.The STRING algorithm and Cytoscape were employed to develop and analyze the relationships among target proteins and compounds/targets/pathways network of the putative targets of the phytocompounds.Further computational analysis was carried out to identify potential drug leads.Results:Based on the Network Pharmacology studies,phytocompounds in Lawsonia inermis exhibit antiplasmodial activity by interacting with therapeutic genes that play essential roles in metabolism and signaling pathways.Notable among the genes are MMP9,MAPK1,HMOX1 and IDO1.Meanwhile,the most influenced pathways include the metabolic pathway,PI3K-Akt signaling pathway,and HIF-1 signaling pathway.ADMET analysis,molecular docking analysis,and molecular dynamics simulation revealed that 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone are recommendable drug leads for Malaria treatment as they form stable and favorable complexes with Matrix metalloproteinase-9(MMP9)target.Conclusion:The 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone phytocompounds from Lawsonia inermis herbal plant are predicted as antimalarial drug candidates and recommended for further wet-lab studies.展开更多
A comparison of the results of a computational simulation and an experimental measurement indicates a good agreement between them: the bowed blade lowers the energy loss coefficient of engine by 11% in the simulation...A comparison of the results of a computational simulation and an experimental measurement indicates a good agreement between them: the bowed blade lowers the energy loss coefficient of engine by 11% in the simulation and by 13% in the measurement. To further discuss the application conditions of bowed blade in compressor, with incidence equal to zero and other boundary conditions unchanged, a computational investigations on four series of linear stators with different aerofoil turning angles are achieved. It is found that the bowed blade has much positive effect in high airfoil turning angle cascade, for example, the optimal retrofit of 30° bow angle highly reduces the energy loss coefficient by 17.9%, when the aerofoil turning angle is 59.5 °. But the optimal retrofit of 15° has only 0.7% reduction when the aerofoil turning angle is 39.5°, or even the compressor performance will get worse with the bow angle gradually increasing. Consequently, it is verified that the turning angle is one of the important factors to decide whether to apply the bowed blade into compressor at low Math number.展开更多
In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor...In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor for the first time.Methods including electrochemistry,weight loss and theoretical calculations are used to study the inhibition effect for P110 steel in 1.0 M HCl.The experimental results show that the modified polymer poly-(Z)-N-benzylidenepropionamide(PBAM)has excellent inhibition effects,and the maximum efficiency can reach 90.62%in impedance spectroscopy tests.The benzene ring structure added in the modified polymer providesπelectrons for the adsorption of inhibitor on metal surface,strengthens the adsorption,and thus brings a better corrosion inhibition effect.In addition to the corrosion inhibition performance,the viscosity-increasing effect of PBAM is evaluated.The results show that the addition of benzene ring not only enhances the corrosion inhibition effect,but also brings temperature resistance to the polymer.However,the salt tolerance of the polymer is affected,the synthesized PBAM which viscosity can above 500 m Pa s at 140℃ is suitable for high temperature and low salinity environment.The modified polyacrylamide has satisfactory corrosion inhibition and oil displacement performance,which provides a new idea for the development of oilfield chemistry.展开更多
Acceptorless dehydrogenation (AD) that uses non-toxic reagents and produces no waste is a type of catalytic reactions toward green chemistry. Acceptorless alcohol dehydrogenation (AAD) can serve as a key step in const...Acceptorless dehydrogenation (AD) that uses non-toxic reagents and produces no waste is a type of catalytic reactions toward green chemistry. Acceptorless alcohol dehydrogenation (AAD) can serve as a key step in constructing new bonds such as C-C and C-N bonds in which alcohols need to be activated into more reactive ketones or aldehydes. AD reactions also can be utilized for hydrogen production from biomass or its fermentation products (mainly alcohols). Reversible hydrogenation/ dehy-drogenation with hydrogen uptake/release is crucial to realization of the potential organic hydride hydrogen storage. In this article, we review the recent computational mechanistic studies of the AD reactions catalyzed by various transition metal complexes as well as the experimental developments. These reactions include acceptorless alcohol dehydrogenations, reversible dehydrogenation/hydrogenation of nitrogen heterocycles, dehydrogenative coupling reactions of alcohols and amines to construct C-N bonds, and dehydrogenative coupling reactions of alcohols and unsaturated substrates to form C-C bonds. For the catalysts possessing metal-ligand bifunctional active sites (such as 28, 45, 86, 87, and 106 in the paper), the dehydrogenations prefer the "bifunctional double hydrogen transfer" mechanism rather than the generally accepted-H elimination mechanism. However, methanol dehydrogenation involved in the C-C coupling reaction of methanol and allene, catalyzed by the iridium complex 121, takes place via the-H elimination mechanism, because the Lewis basicity of either the-allyl moiety or the carboxyl group of the ligand is too weak to exert high Lewis basic reactivity. Unveiling the catalytic mechanisms of AD reactions could help to develop new catalysts.展开更多
Cortical spreading depression (CSD) is an important experimental model for diseases such as stroke, epilepsy and migraine. Previous observations indicated that the amplitude and velocity of the typical direct curren...Cortical spreading depression (CSD) is an important experimental model for diseases such as stroke, epilepsy and migraine. Previous observations indicated that the amplitude and velocity of the typical direct current potential shift during repetitive CSD waves were varying. The recovery state of the tissue was found related with the variation of successive CSD waves. A computational model in this paper aimed to investigate the role of relative refractory period of CSD. This model simulated that continuous injection of KCI solution induced repetitive CSD waves. The first CSD wave often had a larger amplitude and faster velocity than those of the succeeding secondary waves. The relative refractory period lasted much longer than the recovery of ions turbulence. If the induction interval was long enough for recovery, a series of CSD waves would have the same profile asthe first one. In the relative refractory period, an early stimulation might lead to a late initiation of CSD, i.e., "haste makes waste". The amplitude and velocity of CSD waves were found increasing with the initiation interval and asymptotic to those of the first CSD wave. This study verified that the propagation dynamics of CSD waves is modulated by the relative refractory period. It suggested that the refractory period is critical for preventing undesirable CSD waves.展开更多
Eight novel neonicotinoids N-oxide analogues were designed and synthesized. All the compounds have been identified by 1H NMR and HRMS. The N-oxide analogues exhibit high insecticidal activity against cowpea aphids (A...Eight novel neonicotinoids N-oxide analogues were designed and synthesized. All the compounds have been identified by 1H NMR and HRMS. The N-oxide analogues exhibit high insecticidal activity against cowpea aphids (Aphis craccivora) at 250 mg,L-1. The influence of N-oxide formation on the biological activity was elucidated by computational chemical study, and it indicated that the water bridge hydrogen bonding network was broken due to the influence of the O atom connected with the pyridine ring.展开更多
Through deriving expressions relating the dip-angle ( m) of the lower boundary of a layer to the acoustic velocity (υm) of the layer and other pre-determinable parameters, υm and m can be taken as simultaneously ite...Through deriving expressions relating the dip-angle ( m) of the lower boundary of a layer to the acoustic velocity (υm) of the layer and other pre-determinable parameters, υm and m can be taken as simultaneously iterative variables while solving Shah 's equations . Consequently the previous method of computing υm and m presented by ZHANG S . is improved [1] , and the accuracy of solutions increased greatly.展开更多
An unusual negative 1H NMR chemical shift of methyl group was discovered in condensation product of isoco-palane diterpenoid with p-toluenesulfonyl hydrazide.2D NMR,computational studies and single-crystal X-ray dif-f...An unusual negative 1H NMR chemical shift of methyl group was discovered in condensation product of isoco-palane diterpenoid with p-toluenesulfonyl hydrazide.2D NMR,computational studies and single-crystal X-ray dif-fraction analysis showed that the C-20 methyl group was shielded.展开更多
文摘Background:Lawsonia inermis has been widely reported to be used as an herbal treatment for Malaria.However,despite several experimental studies about its antimalarial activities,the approach through which the herbal plant suppresses plasmodium infection is yet to be found.Consequently,this study uses computational approaches to understand the biological targets and pathways involved in the antiplasmodial activities of Lawsonia inermis compounds.Methods:The Gas Chromatography-Mass Spectrometry technique identified the phytocompounds present in the herbal plant.GeneCards,OMIM,and NCBI databases were explored to collate target proteins for further network pharmacology analysis.The phytocompounds were subjected to Absorption,Distribution,Metabolism,Excretion and Toxicity(ADMET)and druglikeness analysis.The STRING algorithm and Cytoscape were employed to develop and analyze the relationships among target proteins and compounds/targets/pathways network of the putative targets of the phytocompounds.Further computational analysis was carried out to identify potential drug leads.Results:Based on the Network Pharmacology studies,phytocompounds in Lawsonia inermis exhibit antiplasmodial activity by interacting with therapeutic genes that play essential roles in metabolism and signaling pathways.Notable among the genes are MMP9,MAPK1,HMOX1 and IDO1.Meanwhile,the most influenced pathways include the metabolic pathway,PI3K-Akt signaling pathway,and HIF-1 signaling pathway.ADMET analysis,molecular docking analysis,and molecular dynamics simulation revealed that 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone are recommendable drug leads for Malaria treatment as they form stable and favorable complexes with Matrix metalloproteinase-9(MMP9)target.Conclusion:The 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone phytocompounds from Lawsonia inermis herbal plant are predicted as antimalarial drug candidates and recommended for further wet-lab studies.
基金National Natural Science Foundation of China(50236020).
文摘A comparison of the results of a computational simulation and an experimental measurement indicates a good agreement between them: the bowed blade lowers the energy loss coefficient of engine by 11% in the simulation and by 13% in the measurement. To further discuss the application conditions of bowed blade in compressor, with incidence equal to zero and other boundary conditions unchanged, a computational investigations on four series of linear stators with different aerofoil turning angles are achieved. It is found that the bowed blade has much positive effect in high airfoil turning angle cascade, for example, the optimal retrofit of 30° bow angle highly reduces the energy loss coefficient by 17.9%, when the aerofoil turning angle is 59.5 °. But the optimal retrofit of 15° has only 0.7% reduction when the aerofoil turning angle is 39.5°, or even the compressor performance will get worse with the bow angle gradually increasing. Consequently, it is verified that the turning angle is one of the important factors to decide whether to apply the bowed blade into compressor at low Math number.
文摘In order to obtain a multifunctional oilfield agent with both corrosion inhibition and oil displacement functions,a polymer with benzene ring structures is synthesized based on polyacrylamide(PAM)and used as inhibitor for the first time.Methods including electrochemistry,weight loss and theoretical calculations are used to study the inhibition effect for P110 steel in 1.0 M HCl.The experimental results show that the modified polymer poly-(Z)-N-benzylidenepropionamide(PBAM)has excellent inhibition effects,and the maximum efficiency can reach 90.62%in impedance spectroscopy tests.The benzene ring structure added in the modified polymer providesπelectrons for the adsorption of inhibitor on metal surface,strengthens the adsorption,and thus brings a better corrosion inhibition effect.In addition to the corrosion inhibition performance,the viscosity-increasing effect of PBAM is evaluated.The results show that the addition of benzene ring not only enhances the corrosion inhibition effect,but also brings temperature resistance to the polymer.However,the salt tolerance of the polymer is affected,the synthesized PBAM which viscosity can above 500 m Pa s at 140℃ is suitable for high temperature and low salinity environment.The modified polyacrylamide has satisfactory corrosion inhibition and oil displacement performance,which provides a new idea for the development of oilfield chemistry.
基金supported by the Chinese Academy of Sciencesthe National Natural Science Foundation of China (20973197 and 21173263)
文摘Acceptorless dehydrogenation (AD) that uses non-toxic reagents and produces no waste is a type of catalytic reactions toward green chemistry. Acceptorless alcohol dehydrogenation (AAD) can serve as a key step in constructing new bonds such as C-C and C-N bonds in which alcohols need to be activated into more reactive ketones or aldehydes. AD reactions also can be utilized for hydrogen production from biomass or its fermentation products (mainly alcohols). Reversible hydrogenation/ dehy-drogenation with hydrogen uptake/release is crucial to realization of the potential organic hydride hydrogen storage. In this article, we review the recent computational mechanistic studies of the AD reactions catalyzed by various transition metal complexes as well as the experimental developments. These reactions include acceptorless alcohol dehydrogenations, reversible dehydrogenation/hydrogenation of nitrogen heterocycles, dehydrogenative coupling reactions of alcohols and amines to construct C-N bonds, and dehydrogenative coupling reactions of alcohols and unsaturated substrates to form C-C bonds. For the catalysts possessing metal-ligand bifunctional active sites (such as 28, 45, 86, 87, and 106 in the paper), the dehydrogenations prefer the "bifunctional double hydrogen transfer" mechanism rather than the generally accepted-H elimination mechanism. However, methanol dehydrogenation involved in the C-C coupling reaction of methanol and allene, catalyzed by the iridium complex 121, takes place via the-H elimination mechanism, because the Lewis basicity of either the-allyl moiety or the carboxyl group of the ligand is too weak to exert high Lewis basic reactivity. Unveiling the catalytic mechanisms of AD reactions could help to develop new catalysts.
文摘Cortical spreading depression (CSD) is an important experimental model for diseases such as stroke, epilepsy and migraine. Previous observations indicated that the amplitude and velocity of the typical direct current potential shift during repetitive CSD waves were varying. The recovery state of the tissue was found related with the variation of successive CSD waves. A computational model in this paper aimed to investigate the role of relative refractory period of CSD. This model simulated that continuous injection of KCI solution induced repetitive CSD waves. The first CSD wave often had a larger amplitude and faster velocity than those of the succeeding secondary waves. The relative refractory period lasted much longer than the recovery of ions turbulence. If the induction interval was long enough for recovery, a series of CSD waves would have the same profile asthe first one. In the relative refractory period, an early stimulation might lead to a late initiation of CSD, i.e., "haste makes waste". The amplitude and velocity of CSD waves were found increasing with the initiation interval and asymptotic to those of the first CSD wave. This study verified that the propagation dynamics of CSD waves is modulated by the relative refractory period. It suggested that the refractory period is critical for preventing undesirable CSD waves.
基金This work was financially supported by National Basic Research Program of China (973 Program, 2010CB126100), National High Technology Research and Development Program of China (863 Program, 2011AA10A207). This work was also partly supported by National Key Technology R&D Program of China (2011BAE06B01), National Natural Science Foundation of China (20802018), Shanghai Foundation of Science and Technology (09391911800, 08391911600, 08ZR1406500), Doctoral Program of Higher Education (200802511002), Shanghai Leading Academic Discipline Project, Project Number: B507 and the Fundamental Research Funds for the Central Universities. This work was supported by "Special Fund for Agro-scientific Research in the Public Interest (201103007)".
文摘Eight novel neonicotinoids N-oxide analogues were designed and synthesized. All the compounds have been identified by 1H NMR and HRMS. The N-oxide analogues exhibit high insecticidal activity against cowpea aphids (Aphis craccivora) at 250 mg,L-1. The influence of N-oxide formation on the biological activity was elucidated by computational chemical study, and it indicated that the water bridge hydrogen bonding network was broken due to the influence of the O atom connected with the pyridine ring.
文摘Through deriving expressions relating the dip-angle ( m) of the lower boundary of a layer to the acoustic velocity (υm) of the layer and other pre-determinable parameters, υm and m can be taken as simultaneously iterative variables while solving Shah 's equations . Consequently the previous method of computing υm and m presented by ZHANG S . is improved [1] , and the accuracy of solutions increased greatly.
基金supported by National Natural Science Foundation of China(No.21302053)Science and Technology Commission of Shanghai Mu-nicipality(No.14DZ1900102)the Fundamental Research Funds for the Central University(No.WY1113007)。
文摘An unusual negative 1H NMR chemical shift of methyl group was discovered in condensation product of isoco-palane diterpenoid with p-toluenesulfonyl hydrazide.2D NMR,computational studies and single-crystal X-ray dif-fraction analysis showed that the C-20 methyl group was shielded.