Integrated satellite-terrestrial network(ISTN)has been considered a novel network architecture to achieve global three-dimensional coverage and ultra-wide area broadband access anytime and anywhere.Being a promising p...Integrated satellite-terrestrial network(ISTN)has been considered a novel network architecture to achieve global three-dimensional coverage and ultra-wide area broadband access anytime and anywhere.Being a promising paradigm,cloud computing and mobile edge computing(MEC)have been identified as key technology enablers for ISTN to further improve quality of service and business continuity.However,most of the existing ISTN studies based on cloud computing and MEC regard satellite networks as relay networks,ignoring the feasibility of directly deploying cloud computing nodes and edge computing nodes on satellites.In addition,most computing tasks are transferred to cloud servers or offloaded to nearby edge servers,the layered design of integrated satellite-air-terrestrial architecture and the cloud-edge-device cooperative processing problems have not been fully considered.Therefore,different from previous works,this paper proposed a novel satellite-air-terrestrial layered architecture for cloud-edge-device collaboration,named SATCECN.Then this paper analyzes the appropriate deployment locations of cloud servers and edge servers in ISTN,and describes the processing flow of typical satellite computing tasks.For computing resource allocation problems,this paper proposed a device-edge-cloud Multi-node Cross-layer Collaboration Computing(MCCC)method to find the optimal task allo-cation strategy that minimizes the task completion delay and the weighted system energy consumption.Furthermore,the approximate optimal solutions of the optimization model are obtained by using successive convex approxi-mation algorithm,and the outstanding advantages of the proposed method in reducing system energy consumption and task execution delay are verified through experiments.Finally,some potential issues and directions for future research are highlighted.展开更多
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i...In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.展开更多
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
Cloud computing has developed as an important information technology paradigm which can provide on-demand services. Meanwhile,its energy consumption problem has attracted a grow-ing attention both from academic and in...Cloud computing has developed as an important information technology paradigm which can provide on-demand services. Meanwhile,its energy consumption problem has attracted a grow-ing attention both from academic and industrial communities. In this paper,from the perspective of cloud tasks,the relationship between cloud tasks and cloud platform energy consumption is established and analyzed on the basis of the multidimensional attributes of cloud tasks. Furthermore,a three-way clustering algorithm of cloud tasks is proposed for saving energy. In the algorithm,f irst,t he cloud tasks are classified into three categories according to the content properties of the cloud tasks and resources respectively. Next,cloud tasks and cloud resources are clustered according to their computation characteristics( e. g. computation-intensive,data-intensive). Subsequently,greedy scheduling is performed. The simulation results showthat the proposed algorithm can significantly reduce the energy cost and improve resources utilization,compared with the general greedy scheduling algorithm.展开更多
High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await i...High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await incoming tasks. This results in a great waste of energy. An energy-saving task scheduling algorithm based on the vacation queuing model for cloud computing systems is proposed in this paper. First, we use the vacation queuing model with exhaustive service to model the task schedule of a heterogeneous cloud computing system.Next, based on the busy period and busy cycle under steady state, we analyze the expectations of task sojourn time and energy consumption of compute nodes in the heterogeneous cloud computing system. Subsequently, we propose a task scheduling algorithm based on similar tasks to reduce the energy consumption. Simulation results show that the proposed algorithm can reduce the energy consumption of the cloud computing system effectively while meeting the task performance.展开更多
基金supported by the Academic Discipline,Post-Graduate Education Project of the Beijing Municipal Commission of Education,and Fundamental Research Funds for the Central Universities under Grant 2022YJS015the National Natural Science Foundation of China under Grant 62173026.
文摘Integrated satellite-terrestrial network(ISTN)has been considered a novel network architecture to achieve global three-dimensional coverage and ultra-wide area broadband access anytime and anywhere.Being a promising paradigm,cloud computing and mobile edge computing(MEC)have been identified as key technology enablers for ISTN to further improve quality of service and business continuity.However,most of the existing ISTN studies based on cloud computing and MEC regard satellite networks as relay networks,ignoring the feasibility of directly deploying cloud computing nodes and edge computing nodes on satellites.In addition,most computing tasks are transferred to cloud servers or offloaded to nearby edge servers,the layered design of integrated satellite-air-terrestrial architecture and the cloud-edge-device cooperative processing problems have not been fully considered.Therefore,different from previous works,this paper proposed a novel satellite-air-terrestrial layered architecture for cloud-edge-device collaboration,named SATCECN.Then this paper analyzes the appropriate deployment locations of cloud servers and edge servers in ISTN,and describes the processing flow of typical satellite computing tasks.For computing resource allocation problems,this paper proposed a device-edge-cloud Multi-node Cross-layer Collaboration Computing(MCCC)method to find the optimal task allo-cation strategy that minimizes the task completion delay and the weighted system energy consumption.Furthermore,the approximate optimal solutions of the optimization model are obtained by using successive convex approxi-mation algorithm,and the outstanding advantages of the proposed method in reducing system energy consumption and task execution delay are verified through experiments.Finally,some potential issues and directions for future research are highlighted.
基金Supported by the National Basic ResearchProgramof China (973 Program2003CB314804)
文摘In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.
基金Supported by the Harbin Technology Bureau Youth Talented Project(2014RFQXJ073)China Postdoctoral Fund Projects(2014M561330)
文摘Cloud computing has developed as an important information technology paradigm which can provide on-demand services. Meanwhile,its energy consumption problem has attracted a grow-ing attention both from academic and industrial communities. In this paper,from the perspective of cloud tasks,the relationship between cloud tasks and cloud platform energy consumption is established and analyzed on the basis of the multidimensional attributes of cloud tasks. Furthermore,a three-way clustering algorithm of cloud tasks is proposed for saving energy. In the algorithm,f irst,t he cloud tasks are classified into three categories according to the content properties of the cloud tasks and resources respectively. Next,cloud tasks and cloud resources are clustered according to their computation characteristics( e. g. computation-intensive,data-intensive). Subsequently,greedy scheduling is performed. The simulation results showthat the proposed algorithm can significantly reduce the energy cost and improve resources utilization,compared with the general greedy scheduling algorithm.
基金supported by Research and Innovation Projects for Graduates of Jiangsu Graduates of Jiangsu Province (No. CXZZ12 0483)the Science and Technology Support Program of Jiangsu Province (No. BE2012849)
文摘High energy consumption is one of the key issues of cloud computing systems. Incoming jobs in cloud computing environments have the nature of randomness, and compute nodes have to be powered on all the time to await incoming tasks. This results in a great waste of energy. An energy-saving task scheduling algorithm based on the vacation queuing model for cloud computing systems is proposed in this paper. First, we use the vacation queuing model with exhaustive service to model the task schedule of a heterogeneous cloud computing system.Next, based on the busy period and busy cycle under steady state, we analyze the expectations of task sojourn time and energy consumption of compute nodes in the heterogeneous cloud computing system. Subsequently, we propose a task scheduling algorithm based on similar tasks to reduce the energy consumption. Simulation results show that the proposed algorithm can reduce the energy consumption of the cloud computing system effectively while meeting the task performance.