An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the r...An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the requirements of computer aided garment design,the authors put forward a method for curved surface approximation in the meaning of leastsquares. Using. this method the computation of geometric modeling is simple andefficient. It is also convenient for curved surface modification and shading.展开更多
A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. U...A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
Aiming at the problem of low accuracy of interpolation error calculation of existing NURBS curves, an approximate method for the distance between a point and a NURBS interpolation curve is proposed while satisfying th...Aiming at the problem of low accuracy of interpolation error calculation of existing NURBS curves, an approximate method for the distance between a point and a NURBS interpolation curve is proposed while satisfying the accuracy of the solution. Firstly, the minimum parameter interval of the node vector corresponding to the data point under test in the original data point sequence is determined, and the parameter interval is subdivided according to the corresponding step size, and the corresponding parameter value is obtained. Secondly, the distance from the measured point to the NURBS curve is calculated, and the nearest distance is found out. The node interval is subdivided again on one side of the nearest distance. Finally, the distance between the data point to be measured and each subdivision point is calculated again, and the minimum distance is taken as the interpolation error between the point and the NURBS curve. The simulation results of actual tool position data show that this method can more accurately obtain the error of spatial NURBS interpolation curve.展开更多
A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve a...A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve and surface, making the result satisfactory.展开更多
In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate con...In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.展开更多
Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
文摘An approximation method for curved surface mannequin and hidden surface eliminationin 3-D computer aided garment design system is described. The mannequin is the basis of the3-D modeling for clothes. In terms of the requirements of computer aided garment design,the authors put forward a method for curved surface approximation in the meaning of leastsquares. Using. this method the computation of geometric modeling is simple andefficient. It is also convenient for curved surface modification and shading.
文摘A new method for shape modification of non-uniform rational B-splines (NURBS) curves was presented, which was based on constrained optimization by means of altering the corresponding weights of their control points. Using this method, the original NURBS curve was modified to satisfy the specified geometric constraints, including single point and multi-point constraints. With the introduction of free parameters, the shapes of modified NURBS curves could be further controlled by users without destroying geometric constraints and seem more naturally. Since explicit formulae were derived to compute new weights of the modified curve, the method was simple and easy to program. Practical examples showed that the method was applicable for computer aided design (CAD) system.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
文摘Aiming at the problem of low accuracy of interpolation error calculation of existing NURBS curves, an approximate method for the distance between a point and a NURBS interpolation curve is proposed while satisfying the accuracy of the solution. Firstly, the minimum parameter interval of the node vector corresponding to the data point under test in the original data point sequence is determined, and the parameter interval is subdivided according to the corresponding step size, and the corresponding parameter value is obtained. Secondly, the distance from the measured point to the NURBS curve is calculated, and the nearest distance is found out. The node interval is subdivided again on one side of the nearest distance. Finally, the distance between the data point to be measured and each subdivision point is calculated again, and the minimum distance is taken as the interpolation error between the point and the NURBS curve. The simulation results of actual tool position data show that this method can more accurately obtain the error of spatial NURBS interpolation curve.
文摘A Bezier interpolation approach is proposed which uses local generation of endpoint slopes and forces the curve and the surface to pass through an arbitrarily specified point to control and modify the shape of curve and surface, making the result satisfactory.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400)the National Natural Science Founda-tion of China (Nos. 60673031 and 60333010) the National Natural Science Foundation for Innovative Research Groups of China (No. 60021201)
文摘In computer aided geometric design(CAGD) ,it is often needed to produce a convexity-preserving interpolating curve according to the given planar data points. However,most existing pertinent methods cannot generate convexity-preserving in-terpolating transcendental curves;even constructing convexity-preserving interpolating polynomial curves,it is required to solve a system of equations or recur to a complicated iterative process. The method developed in this paper overcomes the above draw-backs. The basic idea is:first to construct a kind of trigonometric polynomial curves with a shape parameter,and interpolating trigonometric polynomial parametric curves with C2(or G1) continuity can be automatically generated without having to solve any system of equations or do any iterative computation. Then,the convexity of the constructed curves can be guaranteed by the appropriate value of the shape parameter. Performing the method is easy and fast,and the curvature distribution of the resulting interpolating curves is always well-proportioned. Several numerical examples are shown to substantiate that our algorithm is not only correct but also usable.
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.