Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual sk...Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.展开更多
The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Co...The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Computer-Aided Design and Computer-Aided Manufacturing (CAD/ CAM), robotics, computer vision, computer graphics and visualization, virtual reality, etc. This research paper is used to generate process plan from feature-based modeling, based on an integrated geometric modeling system that supports both feature-based modeling and information storage. Present system is developed only for milling components and limited to selective machining features for prismatic components and further implemented for more machining features to develop algorithms for modeling the components through the input of machining features. As a result, feature information is directly available to downstream activities, and feature extraction is no longer needed. The various systematic steps involved in this approach are study of Design, identification of Features, selection of Processes, Tools and Machines, Machining and Inspection [DFPTMMI]. Machining features generated in the design stage are recognized and stored under the Visual Basic control of CATIA software ActiveX interface. Algorithms are developed for individual features and these algorithms are embedded in Visual Basic forms. This system is discussed and suited for 2.5 Dimensional part approach, however, that can be extended to 3 dimensional prismatic part and complex features machining. Finally a process planning chart has been presented as a model process planning.展开更多
Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-...Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-surface machining for potential geographically-dispersed manufacturing enterprises. In order to easily in- tegrate the external system, Web services are used to encapsulate post-processing functions of PKM legacy sys- tems, including compilation, workspace calculation, interfere calibration, and kinematics transformation. A ser- vice-oriented architecture(SOA) is proposed for the cooperative work between the PKM system and its client. The workflow and the function module of this manufacturing service system are presented. An example shows that as a result of SOA and loose coupling, such a Web service-based manufacturing service system is easier to in- tegrate and interoperate with its client. Meanwhile, the system decreases the manufacturing cost and improves the efficiency than its former kind of distributed system.展开更多
文摘Custom-made esthetic finger prostheses, which are used for rehabilitation of patients with missing or impaired fingers, have been fabricated manually. However, such fabrication is time-consuming and requires manual skill. Here we propose a computer-aided method for fabricating finger pros-theses to save time and allow fabrications that do not require considerable manual skill. In this method, the dimensions of a patient’s healthy finger on the contralateral hand are first measured using a caliper. Using these dimensions, a three-dimensional model is constructed for fabricating a prosthesis for the patient’s impaired finger. Using the 3D model, a mold is designed using 3D modeling tools and a computer-aided design system. The resulting mold is then fabricated using a 3D printer. A finger prosthesis is fabricated by pouring silicone resin into the mold. A finger prosthesis for a volunteer was experimentally fabricated according to the proposed method. To evaluate the size and shape of the finger prosthesis, the difference between the finger prosthesis and the original finger of the volunteer was analyzed. Because the average difference between them was 0.25 mm, it was concluded that the proposed method could be used to fabricate a finger prosthesis of adequate size and shape.
文摘The field of solid modeling has created numerous techniques for unambiguous computer representations of three-dimensional objects. Its data structures and algorithms have been used in a broad range of applications: Computer-Aided Design and Computer-Aided Manufacturing (CAD/ CAM), robotics, computer vision, computer graphics and visualization, virtual reality, etc. This research paper is used to generate process plan from feature-based modeling, based on an integrated geometric modeling system that supports both feature-based modeling and information storage. Present system is developed only for milling components and limited to selective machining features for prismatic components and further implemented for more machining features to develop algorithms for modeling the components through the input of machining features. As a result, feature information is directly available to downstream activities, and feature extraction is no longer needed. The various systematic steps involved in this approach are study of Design, identification of Features, selection of Processes, Tools and Machines, Machining and Inspection [DFPTMMI]. Machining features generated in the design stage are recognized and stored under the Visual Basic control of CATIA software ActiveX interface. Algorithms are developed for individual features and these algorithms are embedded in Visual Basic forms. This system is discussed and suited for 2.5 Dimensional part approach, however, that can be extended to 3 dimensional prismatic part and complex features machining. Finally a process planning chart has been presented as a model process planning.
文摘Parallel kinematics machine (PKM) is advantageous over the serial machine tools in processing the complex-surface products. A manufacturing service system for PKM is developed to provide the services of the complex-surface machining for potential geographically-dispersed manufacturing enterprises. In order to easily in- tegrate the external system, Web services are used to encapsulate post-processing functions of PKM legacy sys- tems, including compilation, workspace calculation, interfere calibration, and kinematics transformation. A ser- vice-oriented architecture(SOA) is proposed for the cooperative work between the PKM system and its client. The workflow and the function module of this manufacturing service system are presented. An example shows that as a result of SOA and loose coupling, such a Web service-based manufacturing service system is easier to in- tegrate and interoperate with its client. Meanwhile, the system decreases the manufacturing cost and improves the efficiency than its former kind of distributed system.