In this paper, we review some mathematical models in medical image processing. Due to the superiority in modeling and computation, variational methods have been proven to be powerful techniques, which have been extrem...In this paper, we review some mathematical models in medical image processing. Due to the superiority in modeling and computation, variational methods have been proven to be powerful techniques, which have been extremely popular and dramatically improved in the past two decades. On one hand, many models have been proposed for nearly all kinds of applications. On the other hand, a lot of models can be globally optimized and also many computation tools have been introduced. Under the variational framework, we focus on two basic problems in medical imaging: image restoration and segmentation, which are core components for kinds of specific tasks. For image restoration, we discuss some models on both additive and multiplicative noises. For image segmentation, we review some models on both whole image segmentation and specific target delineation, with the later being a key step in computer aided surgery. Additionally, we present some models on liver delineation and give their applications to living donor liver transplantation.展开更多
Image-guided computer aided surgery system (ICAS) contributes to safeness and success of surgery operations by means of displaying anatomical structures and showing correlative information to surgeons in the process o...Image-guided computer aided surgery system (ICAS) contributes to safeness and success of surgery operations by means of displaying anatomical structures and showing correlative information to surgeons in the process of operation. Based on analysis of requirements for ICAS, a new concept of clinical knowledge-based ICAS was proposed. Designing a reasonable data structure model is essential for realizing this new concept. The traditional data structure is limited in expressing and reusing the clinical knowledge such as locating an anatomical object, topological relations of anatomical objects and correlative clinical attributes. A data structure model called mixed adjacency lists by octree-path-chain (MALOC) was outlined, which can combine patient's images with clinical knowledge, as well as efficiently locate the instrument and search the objects' information. The efficiency of data structures was analyzed and experimental results were given in comparison to other traditional data structures. The result of the nasal surgery experiment proves that MALOC is a proper model for clinical knowledge-based ICAS that has advantages in not only locating the operative instrument precisely but also proving surgeons with real-time operation-correlative information. It is shown that the clinical knowledge-based ICAS with MALOC model has advantages in terms of safety and success of surgical operations, and help in accurately locating the operative instrument and providing operation-correlative knowledge and information to surgeons in the process of operations.展开更多
基金Supported by the National Natural Science Foundation of China (11101365)a National Science and Technology Project during the twelfth five-year plan of China (2012BAI10B04)
文摘In this paper, we review some mathematical models in medical image processing. Due to the superiority in modeling and computation, variational methods have been proven to be powerful techniques, which have been extremely popular and dramatically improved in the past two decades. On one hand, many models have been proposed for nearly all kinds of applications. On the other hand, a lot of models can be globally optimized and also many computation tools have been introduced. Under the variational framework, we focus on two basic problems in medical imaging: image restoration and segmentation, which are core components for kinds of specific tasks. For image restoration, we discuss some models on both additive and multiplicative noises. For image segmentation, we review some models on both whole image segmentation and specific target delineation, with the later being a key step in computer aided surgery. Additionally, we present some models on liver delineation and give their applications to living donor liver transplantation.
基金the Shanghai Municipal Education Commission Fund for Young Scholar (No. 02BQ23)the SEC E-Institute: Shanghai High Institutions Grid Project (No. 200304)
文摘Image-guided computer aided surgery system (ICAS) contributes to safeness and success of surgery operations by means of displaying anatomical structures and showing correlative information to surgeons in the process of operation. Based on analysis of requirements for ICAS, a new concept of clinical knowledge-based ICAS was proposed. Designing a reasonable data structure model is essential for realizing this new concept. The traditional data structure is limited in expressing and reusing the clinical knowledge such as locating an anatomical object, topological relations of anatomical objects and correlative clinical attributes. A data structure model called mixed adjacency lists by octree-path-chain (MALOC) was outlined, which can combine patient's images with clinical knowledge, as well as efficiently locate the instrument and search the objects' information. The efficiency of data structures was analyzed and experimental results were given in comparison to other traditional data structures. The result of the nasal surgery experiment proves that MALOC is a proper model for clinical knowledge-based ICAS that has advantages in not only locating the operative instrument precisely but also proving surgeons with real-time operation-correlative information. It is shown that the clinical knowledge-based ICAS with MALOC model has advantages in terms of safety and success of surgical operations, and help in accurately locating the operative instrument and providing operation-correlative knowledge and information to surgeons in the process of operations.