The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are...The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the effects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial dif- ferential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge-Kutta method. Moreover, the effects of different truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.展开更多
基金supported by the State Key Program of National Natural Science Foundation of China (10932006 and 11232009)Innovation Program of Shanghai Municipal Education Commission (12YZ028)
文摘The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the effects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial dif- ferential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge-Kutta method. Moreover, the effects of different truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.