The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algor...The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algorithm; and some ideas about GPUs (Graphics Processing Units) and its use in general purpose computing were presented. The paper shows a computational implementation of FDK algorithm and the process of parallelization of this implementation. Compare the parallel version of the algorithm with the sequential version, used speedup as a performance metric. To evaluate the performance of parallel version, two GPUs, GeForce 9400GT (16 cores) a low capacity GPU and Quadro 2000 (192 cores) a medium capacity GPU was reached speedup of 3.37.展开更多
Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limita...Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater ope...Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.展开更多
Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of app...Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.展开更多
Compressed sensing(CS)has been successfully applied to realize image reconstruction.Neural networks have been introduced to the CS of images to exploit the prior known support information,which can improve the reconst...Compressed sensing(CS)has been successfully applied to realize image reconstruction.Neural networks have been introduced to the CS of images to exploit the prior known support information,which can improve the reconstruction quality.Capsule Network(Caps Net)is the latest achievement in neural networks,and can well represent the instantiation parameters of a specific type of entity or part of an object.This study aims to propose a Caps Net with a novel dynamic routing to embed the information within the CS framework.The output of the network represents the probability that the index of the nonzero entry exists on the support of the signal of interest.To lead the dynamic routing to the most likely index,a group of prediction vectors is designed determined by the information.Furthermore,the results of experiments on imaging signals are taken for a comparation of the performances among different algorithms.It is concluded that the proposed capsule network(Caps Net)creates higher reconstruction quality at nearly the same time with traditional Caps Net.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar...The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.展开更多
It is very slow at present to reconstruct an image from its sparse decomposition results.To overcome this one of the main drawbacks in image sparse decomposition,the property of the energy distribution of atoms is stu...It is very slow at present to reconstruct an image from its sparse decomposition results.To overcome this one of the main drawbacks in image sparse decomposition,the property of the energy distribution of atoms is studied in this paper.Based on the property that energy of most atoms is highly concentrated,an algorithm is proposed to fast reconstruct an image from atoms’parameters by limiting atom reconstruction calculating within the atom energy concentrating area.Moreover,methods for fast calculating atom energy and normalization are also put forward.The fast algorithm presented in this paper improves the speed of the image reconstructing by approximately 32 times without degrading the reconstructed image quality.展开更多
In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often distur...In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images展开更多
文摘The paper presents the implementation of a parallel version of FDK (Felkamp, David e Kress) algorithm using graphics processing units. Discussion was briefly some elements the computed tomographic scan and FDK algorithm; and some ideas about GPUs (Graphics Processing Units) and its use in general purpose computing were presented. The paper shows a computational implementation of FDK algorithm and the process of parallelization of this implementation. Compare the parallel version of the algorithm with the sequential version, used speedup as a performance metric. To evaluate the performance of parallel version, two GPUs, GeForce 9400GT (16 cores) a low capacity GPU and Quadro 2000 (192 cores) a medium capacity GPU was reached speedup of 3.37.
文摘Cone-beam CT (CBCT) scanners are based on volumetric tomography, using a 2D extended digital array providing an area detector [1,2]. Compared to traditional CT, CBCT has many advantages, such as less X-ray beam limitation, and rapid scan time, etc. However, in CBCT images the x-ray beam has lower mean kilovolt (peak) energy, so the metal artifact is more pronounced on. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used to replace the pixels inside the metal object with the boundary pixels. The modified projection data, using synthetically Radon Transformation, were then used to reconstruct a new back projected CBCT image. In this paper, we present a method, based on the morphological, area and pixel operators, which we applied on the Radon transformed image, to reduce the metal artifacts in CBCT, then we built the Radon back project images using the radon invers transformation. The artifacts effects on the 3d-reconstruction is that, the soft tissues appears as bones or teeth. For the preprocessing of the CBCT images, two methods are used to recognize the noisy black areas that the first depends on thresholding and closing algorithm, and the second depends on tracing boundaries after using thresholding algorithm too. The intensity of these areas is the lowest in the image than other tissues, so we profit this property to detect the edges of these areas. These two methods are applied on phantom and patient image data. It deals with reconstructed CBCT dicom images and can effectively reduce such metal artifacts. Due to the data of the constructed images are corrupted by these metal artifacts, qualitative and quantitative analysis of CBCT images is very essential.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
文摘Underwater images are often with biased colours and reduced contrast because of the absorption and scattering effects when light propagates in water.Such images with degradation cannot meet the needs of underwater operations.The main problem in classic underwater image restoration or enhancement methods is that they consume long calcu-lation time,and often,the colour or contrast of the result images is still unsatisfied.Instead of using the complicated physical model of underwater imaging degradation,we propose a new method to deal with underwater images by imitating the colour constancy mechanism of human vision using double-opponency.Firstly,the original image is converted to the LMS space.Then the signals are linearly combined,and Gaussian convolutions are per-formed to imitate the function of receptive fields(RFs).Next,two RFs with different sizes work together to constitute the double-opponency response.Finally,the underwater light is estimated to correct the colours in the image.Further contrast stretching on the luminance is optional.Experiments show that the proposed method can obtain clarified underwater images with higher quality than before,and it spends significantly less time cost compared to other previously published typical methods.
基金National Natural Science Foundation of China,Grant/Award Number:62274142Hangzhou Major Technology Innovation Project of Artificial Intelligence,Grant/Award Number:2022AIZD0060。
文摘Person image generation aims to generate images that maintain the original human appearance in different target poses.Recent works have revealed that the critical element in achieving this task is the alignment of appearance domain and pose domain.Previous alignment methods,such as appearance flow warping,correspondence learning and cross attention,often encounter challenges when it comes to producing fine texture details.These approaches suffer from limitations in accurately estimating appearance flows due to the lack of global receptive field.Alternatively,they can only perform cross-domain alignment on high-level feature maps with small spatial dimensions since the computational complexity increases quadratically with larger feature sizes.In this article,the significance of multi-scale alignment,in both low-level and high-level domains,for ensuring reliable cross-domain alignment of appearance and pose is demonstrated.To this end,a novel and effective method,named Multi-scale Crossdomain Alignment(MCA)is proposed.Firstly,MCA adopts global context aggregation transformer to model multi-scale interaction between pose and appearance inputs,which employs pair-wise window-based cross attention.Furthermore,leveraging the integrated global source information for each target position,MCA applies flexible flow prediction head and point correlation to effectively conduct warping and fusing for final transformed person image generation.Our proposed MCA achieves superior performance on two popular datasets than other methods,which verifies the effectiveness of our approach.
基金supported by the Research Fund Project of Beijing Information Science and Technology University(2021XJJ44 and 2021XJJ69).
文摘Compressed sensing(CS)has been successfully applied to realize image reconstruction.Neural networks have been introduced to the CS of images to exploit the prior known support information,which can improve the reconstruction quality.Capsule Network(Caps Net)is the latest achievement in neural networks,and can well represent the instantiation parameters of a specific type of entity or part of an object.This study aims to propose a Caps Net with a novel dynamic routing to embed the information within the CS framework.The output of the network represents the probability that the index of the nonzero entry exists on the support of the signal of interest.To lead the dynamic routing to the most likely index,a group of prediction vectors is designed determined by the information.Furthermore,the results of experiments on imaging signals are taken for a comparation of the performances among different algorithms.It is concluded that the proposed capsule network(Caps Net)creates higher reconstruction quality at nearly the same time with traditional Caps Net.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
基金Supported by the National Natural Science Foundation of China
文摘The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.
基金supported by the National Natural Science Foundation of China(Grant No.60602043)China Scholarship Council Found(No.2001-3048)Applied Foundational Research of Sichuan Province(No.03JY029-048-2).
文摘It is very slow at present to reconstruct an image from its sparse decomposition results.To overcome this one of the main drawbacks in image sparse decomposition,the property of the energy distribution of atoms is studied in this paper.Based on the property that energy of most atoms is highly concentrated,an algorithm is proposed to fast reconstruct an image from atoms’parameters by limiting atom reconstruction calculating within the atom energy concentrating area.Moreover,methods for fast calculating atom energy and normalization are also put forward.The fast algorithm presented in this paper improves the speed of the image reconstructing by approximately 32 times without degrading the reconstructed image quality.
基金Supported by the National Basic Research Program of China ("973"Program)(2006CB601201)~~
文摘In high-resolution cone-beam computed tomography (CBCT) using the flat-panel detector, imperfect or defect detector elements cause ring artifacts due to the none-uniformity of their X-ray response. They often disturb the image quality. A dedicated fitting correction method for high-resolution micro-CT is presented. The method converts each elementary X-ray response curve to an average one, and eliminates response inconsistency among pixels. Other factors of the method are discussed, such as the correction factor variability by different sampling frames and nonlinear factors over the whole spectrum. Results show that the noise and artifacts are both reduced in reconstructed images