Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circu...Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.展开更多
The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circu...The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circuit of soft switching arc welding inverter power source. However, when the duty ratio of leading leg was reduced to zero, the output power stayed the constant value instead of becoming zero. The working status and waveforms of some major parameters were studied in this paper while the duty ratio of leading leg was zero. It was concluded that the minimum output power of soft switching inverter was related to the charging voltage of paraUel capacitors, and the output power also could be reduced by reducing the duty ratio of lagging leg. A novel two-stage continuous PWM control method that could switch working-mode between full bridge and half bridge was put forward in this paper. This kind of control method could further reduce the output power of soft switching inverter in order to meet the requirement of low heat input of sheet metal welding.展开更多
An inverter type power source system for robot arc welding is considered. The power source includes several isolated gate bipolar transistor (IGBT) inverter power units. The output current of every individual power un...An inverter type power source system for robot arc welding is considered. The power source includes several isolated gate bipolar transistor (IGBT) inverter power units. The output current of every individual power unit is regulated by an identical single chip microcomputer to enable the whole power source system to work over a wide range of continuous output current with good dynamic properties. This inverter type power source satisfies robotic welding requirements.展开更多
因脉冲熔化极气体保护焊(Pulse gas metal arc welding,GMAW-P)焊接电弧负载非线性与时变性的特点,GMAW-P焊接电源-电弧系统的研究、设计及其控制参数的选定有其固有的难点。采用基于Matlab/Simulink扩展工具S函数模块设计技术,建立GMA...因脉冲熔化极气体保护焊(Pulse gas metal arc welding,GMAW-P)焊接电弧负载非线性与时变性的特点,GMAW-P焊接电源-电弧系统的研究、设计及其控制参数的选定有其固有的难点。采用基于Matlab/Simulink扩展工具S函数模块设计技术,建立GMAW-P焊接电源-电弧系统动态仿真模型。基于所建立的仿真模型,在完成对控制器参数优化设计的同时,实现对GMAW-P电源-电弧系统的抗弧长干扰仿真研究。试验证明,仿真计算结果和试验结果具有较好的一致性,验证了所建仿真模型的正确性、控制系统调节器优化参数的适应性及电源控制系统的动态性能,为GMAW-P焊接电源-电弧系统仿真建模研究及控制器参数的优化设计提供了新的途径。展开更多
文摘Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.
文摘The full bridge zero voltage zero current switching ( FB-ZVZCS ) , which could adjust the output power by keeping the duty ratio of lagging leg constant and changing the duty ratio of leading leg, was a common circuit of soft switching arc welding inverter power source. However, when the duty ratio of leading leg was reduced to zero, the output power stayed the constant value instead of becoming zero. The working status and waveforms of some major parameters were studied in this paper while the duty ratio of leading leg was zero. It was concluded that the minimum output power of soft switching inverter was related to the charging voltage of paraUel capacitors, and the output power also could be reduced by reducing the duty ratio of lagging leg. A novel two-stage continuous PWM control method that could switch working-mode between full bridge and half bridge was put forward in this paper. This kind of control method could further reduce the output power of soft switching inverter in order to meet the requirement of low heat input of sheet metal welding.
文摘An inverter type power source system for robot arc welding is considered. The power source includes several isolated gate bipolar transistor (IGBT) inverter power units. The output current of every individual power unit is regulated by an identical single chip microcomputer to enable the whole power source system to work over a wide range of continuous output current with good dynamic properties. This inverter type power source satisfies robotic welding requirements.
文摘因脉冲熔化极气体保护焊(Pulse gas metal arc welding,GMAW-P)焊接电弧负载非线性与时变性的特点,GMAW-P焊接电源-电弧系统的研究、设计及其控制参数的选定有其固有的难点。采用基于Matlab/Simulink扩展工具S函数模块设计技术,建立GMAW-P焊接电源-电弧系统动态仿真模型。基于所建立的仿真模型,在完成对控制器参数优化设计的同时,实现对GMAW-P电源-电弧系统的抗弧长干扰仿真研究。试验证明,仿真计算结果和试验结果具有较好的一致性,验证了所建仿真模型的正确性、控制系统调节器优化参数的适应性及电源控制系统的动态性能,为GMAW-P焊接电源-电弧系统仿真建模研究及控制器参数的优化设计提供了新的途径。