期刊文献+
共找到894,712篇文章
< 1 2 250 >
每页显示 20 50 100
Study on Effect of Gd (III) Speciation on Ca (II) Speciationin Human Blood Plasma by Computer Simulation 被引量:2
1
作者 Yue WANG Xing LU +4 位作者 Shu Yun WANG Jing Fen HAN Kui Yue YANG Chun Ji NIU Jia Zuan NI 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第2期161-162,共2页
Ca (II) speciation and effect of Gd (III) speciation on Ca (II) speciation in human blood plasma were studied by computer simulation. [CaHCO3](-) is a predominant compound species of Ca (II). Gd (III) can compete with... Ca (II) speciation and effect of Gd (III) speciation on Ca (II) speciation in human blood plasma were studied by computer simulation. [CaHCO3](-) is a predominant compound species of Ca (II). Gd (III) can compete with Ca (II) for biological molecules. The presence of Gd (III) results in a increase of concentration of free Ca (II) and a decrease of concentration of Ca (II) compounds. 展开更多
关键词 SPECIATION blood plasma computer simulation calcium (II) gadolinium (III)
下载PDF
COMPUTER SIMULATION OF EFFECT OF ORIENTATION DIFFERENCE ON MECHANICAL PROPERTIES OF BICRYSTALLINE SPECIMENS 被引量:1
2
作者 WEI Chao QIAN Rengen LIN Shi XIAO Jimei University of Science and Technology Beijing,Beijing,China Dept.of Mathematics and Mechanics,University of Science and Technology Beijing,Bijing 100083,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第1期13-16,共4页
Based on the experimental results of the work-hardening processes of single crystals,the ac- commodation processes of polycrvstal deformation and the assumption of idealized polycrystal,the stress-strain relation of e... Based on the experimental results of the work-hardening processes of single crystals,the ac- commodation processes of polycrvstal deformation and the assumption of idealized polycrystal,the stress-strain relation of elasto-plastic deformation crystal was derived.The effect of orientation difference on the mechanical properties of the bicrvstalline specimens of aluminum was simulated by means of the finite element method(FEM)of elasto-plastic crystal.The results are in good agreement with the experimental results made by Clark and Chalmers in 1954. 展开更多
关键词 BICRYSTAL orientation difference grain boundary computer simulation finite element method
下载PDF
Computer Simulation for Effect of Tb^(3+) on Ca^(2+)Speciation in Human Plasma
3
作者 卢兴 王悦 +3 位作者 张海元 王进平 牛春吉 倪嘉缵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第3期238-240,共3页
Effect of Tb 3+ on Ca 2+ speciation in human plasma was studied by means of the computer program of MINTEQA2. When Tb 3+ ions are not added into the system, Ca 2+ ions mostly distribute in free Ca ... Effect of Tb 3+ on Ca 2+ speciation in human plasma was studied by means of the computer program of MINTEQA2. When Tb 3+ ions are not added into the system, Ca 2+ ions mostly distribute in free Ca 2+ (74.7%) and the surplus distributes in Ca 2+ complexes, such as [CaHCO 3] +(7.9%), [Ca(Lac)] +(6.4%), CaHPO 4 (1 3%), [CaHistidinateThreoninateH 3] 3+ (2.4%), [CaCitrateHistidinateH 2] (2.3%) and CaCO 3(1.1%). Tb 3+ can compete with Ca 2+ for inorganic as well as biological ligands. An increase of concentration of Tb 3+ in the system results in an increase of content of free Ca 2+ and a decrease of contents of Ca 2+ complexes. 展开更多
关键词 rare earths computer simulation SPECIATION human plasma CALCIUM TERBIUM
下载PDF
Computer simulation for the effect of coherent strain on the precipitation progress of binary alloy
4
作者 卢艳丽 陈铮 王永欣 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第5期634-640,共7页
Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has ob... Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes,their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10]and[01]directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms. 展开更多
关键词 binary alloy coherent strain precipitation progress computer simulation
下载PDF
Simulation of the Ecosystem Productivity Responses to Aerosol Diffuse Radiation Fertilization Effects over the Pan-Arctic during 2001–19 被引量:1
5
作者 Zhiding ZHANG Xu YUE +3 位作者 Hao ZHOU Jun ZHU Yadong LEI Chenguang TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期84-96,共13页
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil... The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming. 展开更多
关键词 diffuse radiation fertilization effects anthropogenic aerosols natural aerosols pan-Arctic net primary productivity
下载PDF
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
6
作者 刘逸飞 李继全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期8-15,共8页
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic... The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient. 展开更多
关键词 gyro-Landau-fluid simulation impurity effects ion temperature gradient mode turbulence transport
下载PDF
Gyrokinetic simulations of the kinetic electron effects on the electrostatic instabilities on the ITER baseline scenario
7
作者 Debing ZHANG Pengfei ZHAO +2 位作者 Yingfeng XU Lei YE Xianmei ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期109-124,共16页
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re... The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated. 展开更多
关键词 ITER baseline scenario gyrokinetic simulation kinetic electron effects electrostatic instability
下载PDF
Phase-field simulations of the effect of temperature and interface for zirconiumδ-hydrides
8
作者 陈子航 盛杰 +8 位作者 刘瑜 施小明 黄厚兵 许可 王越超 武帅 孙博 刘海风 宋海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期701-710,共10页
Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we hav... Hydride precipitation in zirconium cladding materials can damage their integrity and durability.Service temperature and material defects have a significant effect on the dynamic growth of hydrides.In this study,we have developed a phasefield model based on the assumption of elastic behaviour within a specific temperature range(613 K-653 K).This model allows us to study the influence of temperature and interfacial effects on the morphology,stress,and average growth rate of zirconium hydride.The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology.The ultimate determinant of hydride orientation is the loss of interfacial coherency,primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q.An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical,accompanied by the onset of redirection behaviour.Interestingly,redirection occurs at a critical mismatch level,denoted as qc,and remains unaffected by variations in temperature and interfacial energy.However,this redirection leads to an increase in the maximum stress,which may influence the direction of hydride crack propagation.This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys. 展开更多
关键词 zirconium hydride phase-field method temperature effect mismatch degree
下载PDF
Simulation of magnetization process and Faraday effect of magnetic bilayer films
9
作者 Sheng Gao An Du +2 位作者 Lei Zhang Tian-Guang Li Da-Cheng Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期590-597,共8页
We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,ma... We described ferromagnetic film and bilayer films composed of two ferromagnetic layers coupled through antiferromagnetic interfacial interaction by classical Heisenberg model and simulated their magnetization state,magnetic permeability,and Faraday effect at zero and finite temperature by using the Landau–Lifshitz–Gilbert(LLG)equation.The results indicate that in a microwave field with positive circular polarization,the ferromagnetic film has one resonance peak while the bilayer film has two resonance peaks.However,the resonance peak disappears in ferromagnetic film,and only one resonance peak emerges in bilayer film in the negative circularly polarized microwave field.When the microwave field’s frequency exceeds the film’s resonance frequency,the Faraday rotation angle of the ferromagnetic film is the greatest,and it decreases when the thickness of the two halves of the bilayer is reduced.When the microwave field’s frequency remains constant,the Faraday rotation angle fluctuates with temperature in the same manner as spontaneous magnetization does.When a DC magnetic field is applied in the direction of the anisotropic axis of the film,the Faraday rotation angle varies with the DC magnetic field and shows a similar shape of the hysteresis loop. 展开更多
关键词 magnetic bilayer films magnetic permeability hysteresis loop Faraday effect Landau-Lifshitz-Gilbert(LLG)equation
下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect
10
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
下载PDF
Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
11
作者 冯亚辉 郭红霞 +6 位作者 潘霄宇 张晋新 钟向丽 张鸿 琚安安 刘晔 欧阳晓平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期420-428,共9页
The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned w... The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained. 展开更多
关键词 SILICON-GERMANIUM heterojunction bipolar transistor pulsed laser single event effect equivalent linear energy transfer(LET)value
下载PDF
Atomistic simulation of thermal effects and defect structures during nanomachining of copper 被引量:5
12
作者 郭永博 梁迎春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2762-2770,共9页
Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature dis... Molecular dynamics (MD) simulations of monocrystalline copper (100) surface during nanomachining process were performed based on a new 3D simulation model. The material removal mechanism and system temperature distribution were discussed. The simulation results indicate that the system temperature distribution presents a roughly concentric shape, a steep temperature gradient is observed in diamond cutting tool, and the highest temperature is located in chip. Centrosymmetry parameter method was used to monitor defect structures. Dislocations and vacancies are the two principal types of defect structures. Residual defect structures impose a major change on the workpiece physical properties and machined surface quality. The defect structures in workpiece are temperature dependent. As the temperature increases, the dislocations are mainly mediated from the workpiece surface, while the others are dissociated into point defects. The relatively high cutting speed used in nanomachining results in less defect structures, beneficial to obtain highly machined surface quality. 展开更多
关键词 monocrystalline copper atomistic simulation thermal effects molecular dynamics simulation nanomachining temperature distribution defect structures dislocations VACANCIES
下载PDF
Analysis of debris flow control effect and hazard assessment in Xinqiao Gully,Wenchuan M_(s)8.0 earthquake area based on numerical simulation 被引量:1
13
作者 Chang Yang Yong-bo Tie +3 位作者 Xian-zheng Zhang Yan-feng Zhang Zhi-jie Ning Zong-liang Li 《China Geology》 CAS CSCD 2024年第2期248-263,共16页
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff... Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events. 展开更多
关键词 Landslide Debris flow Hazard assessment Numerical simulation OpenLISEM Prevention and control project Wenchuan M_(s)8.0 earthquake Xinqiao Gully Sichuan province Geological hazards survey engineering
下载PDF
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
14
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 NANOINDENTATION twin boundary plastic deformation molecular dynamics simulation
下载PDF
Imaging simulation and analysis of attitude jitter effect on topographic mapping for lunar orbiter stereo optical cameras
15
作者 CHEN Chen TONG Xiao-Hua +4 位作者 LIU Shi-Jie YE Zhen HUANG Chao-Wei WU Hao ZHANG Han 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第5期722-730,共9页
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m... The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison. 展开更多
关键词 topographic mapping lunar orbiter stereo camera attitude jitter imaging simulation digital elevation model
下载PDF
Ab initio molecular dynamics simulation reveals the influence of entropy effect on Co@BEA zeolite-catalyzed dehydrogenation of ethane
16
作者 Yumeng Fo Shaojia Song +8 位作者 Kun Yang Xiangyang Ji Luyuan Yang Liusai Huang Xinyu Chen Xueqiu Wu Jian Liu Zhen Zhao Weiyu Song 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期195-205,共11页
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati... The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments. 展开更多
关键词 Ethane dehydrogenation C-H bond activation Ab initio molecular dynamics simulation ENTROPY Heterogeneous catalysis
下载PDF
Phase-field simulations of forced flow effect on dendritic growth perpendicular to flow 被引量:4
17
作者 王智平 王军伟 +2 位作者 朱昌盛 冯力 肖荣振 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期612-617,共6页
The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and ther... The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result. 展开更多
关键词 phase-field method laminar flow dendritic growth computer simulation SOLIDIFICATION flow velocity
下载PDF
Numerical simulation on borehole breakout and borehole size effect using discrete element method 被引量:9
18
作者 H.Lin W.H.Kang +2 位作者 J.Oh I.Canbulat B.Hebblewhite 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期623-633,共11页
Estimation of horizontal stress magnitudes from borehole breakouts has been an attractive topic in the petroleum and mining industries,although there are critical research gaps that remain unfilled.In this paper,numer... Estimation of horizontal stress magnitudes from borehole breakouts has been an attractive topic in the petroleum and mining industries,although there are critical research gaps that remain unfilled.In this paper,numerical simulation is conducted on Gosford sandstone to investigate the borehole breakout and its associated borehole size effect,including temperature influence.The discrete element method(DEM)model shows that the borehole breakout angular span is constant after the initial formation,whereas its depth propagates along the minimum horizontal stress direction.This indicates that the breakout angular span is a reliable parameter for horizontal stress estimation.The borehole size effect simulations illustrated the importance of borehole size on breakout geometries in which smaller borehole size leads to higher breakout initiation stress as well as the stress re-distribution from borehole wall outwards through micro-cracking.This implies that the stress may be averaged over a distance around the borehole and breakout initiation occurs at the borehole wall rather than some distance into the rock.In addition,the numerical simulation incorporated the thermal effect which is widely encountered in deep geothermal wells.Based on the results,the higher temperature led to lower breakout initiation stress with same borehole size,and more proportion of shear cracks was generated under higher temperature.This indicates that the temperature might contribute to the micro-fracturing mode and hence influences the horizontal stress estimation results from borehole breakout geometries.Numerical simulation showed that breakout shape and dimensions changed considerably under high stress and high temperature conditions,suggesting that the temperature may need to be considered for breakout stress analysis in deep locations. 展开更多
关键词 Borehole breakout Breakout angular span Borehole size effect Numerical simulation Thermal effect
下载PDF
COMPUTER SIMULATION OF GRAIN BOUNDARY SEGREGATION BEHAVIOR AND MECHANISMS OF STRENGTHENING OF Mg IN Ni-BASED SUPERALLOYS 被引量:2
19
作者 陈国良 葛红林 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第2期108+84-91,共9页
This paper used EAM and static relaxation method to simulate the grain boundary segregation behavior of Mg in Ni-based superalloys. The results offer a better understanding in the strengthening mechanism of Mg additio... This paper used EAM and static relaxation method to simulate the grain boundary segregation behavior of Mg in Ni-based superalloys. The results offer a better understanding in the strengthening mechanism of Mg addition in superalloys. The segregation of Mg increases the grain boundary cohesive bond and the vacancy formation energy, and decreases the mobility of grain boundary dislocation. It results in the retardation of creep voids initiation and growth. 展开更多
关键词 Mg in Superalloys Grain boundary segregation SUPERALLOY computer simulation
下载PDF
Model architecture-oriented combat system effectiveness simulation based on MDE 被引量:3
20
作者 Yonglin Lei Ning Zhu +2 位作者 Jian Yao Hessam Sarjoughian Weiping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期900-922,共23页
Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are g... Combat system effectiveness simulation (CSES) is a special type of complex system simulation. Three non-functional requirements (NFRs), i.e. model composability, domain specific modeling, and model evolvability, are gaining higher priority from CSES users when evaluating different modeling methodologies for CSES. Traditional CSES modeling methodologies are either domain-neutral (lack of domain characteristics consideration and limited support for model composability) or domain-oriented (lack of openness and evolvability) and fall short of the three NFRs. Inspired by the concept of architecture in systems engineering and software engineering fields, we extend it into a concept of model architecture for complex simulation systems, and propose a model architecture-oriented modeling methodology in which the model architecture plays a central role in achieving the three NFRs. Various model-driven engineering (MDE) approaches and technologies, including simulation modeling platform (SMP), unified modeling language (UML), domain specific modeling (DSM), eclipse modeling framework (EMF), graphical modeling framework (GMF), and so forth, are applied where possible in representing the CSES model architecture and its components' behaviors from physical and cognitive domain aspects. A prototype CSES system, called weapon effectiveness simulation system (WESS), and a non-trivial air-combat simulation example are presented to demonstrate the methodology. 展开更多
关键词 combat system effectiveness simulation (CSES) model architecture model-driven engineering (MDE) simulation modeling platform (SMP) domain specific modeling (DSM) weapon effectiveness simulation system (WESS)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部