The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in ...The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in pharmaceutical manufacturing, focusing on ensuring data integrity and regulatory compliance in the digital era. We examine the unique characteristics of cloud-based systems and their implications for traditional validation approaches. A comprehensive review of current regulatory frameworks, including FDA and EMA guidelines, provides context for discussing cloud-specific validation challenges. The paper introduces a risk-based approach to cloud CSV, detailing methodologies for assessing and mitigating risks associated with cloud adoption in pharmaceutical environments. Key considerations for maintaining data integrity in cloud systems are analyzed, particularly when applying ALCOA+ principles in distributed computing environments. The article presents strategies for adapting traditional Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ) models to cloud-based systems, highlighting the importance of continuous validation in dynamic cloud environments. The paper also explores emerging trends, including integrating artificial intelligence and edge computing in pharmaceutical manufacturing and their implications for future validation strategies. This research contributes to the evolving body of knowledge on cloud validation in pharmaceuticals by proposing a framework that balances regulatory compliance with the agility offered by cloud technologies. The findings suggest that while cloud adoption presents unique challenges, a well-structured, risk-based approach to validation can ensure the integrity and compliance of cloud-based systems in pharmaceutical manufacturing.展开更多
The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the...The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the industry’s needs. Using surveys, interviews, and on-site visits at eight major mining companies, we identified significant variations in maintenance strategies, CMMS usage, and reliability engineering. The EMMF prioritizes predictive maintenance, efficient CMMS implementation, ongoing training, and robust reliability engineering to shift from reactive to proactive maintenance. We recommend adopting continuous improvement practices and data-driven decision-making based on performance metrics, with a phased EMMF implementation aligning maintenance with strategic business objectives. This framework is poised to enhance operational efficiency, equipment reliability, and safety, fostering sustainable growth in the Zambian mining sector.展开更多
文摘The pharmaceutical industry’s increasing adoption of cloud-based technologies has introduced new challenges in computerized systems validation (CSV). This paper explores the evolving landscape of cloud validation in pharmaceutical manufacturing, focusing on ensuring data integrity and regulatory compliance in the digital era. We examine the unique characteristics of cloud-based systems and their implications for traditional validation approaches. A comprehensive review of current regulatory frameworks, including FDA and EMA guidelines, provides context for discussing cloud-specific validation challenges. The paper introduces a risk-based approach to cloud CSV, detailing methodologies for assessing and mitigating risks associated with cloud adoption in pharmaceutical environments. Key considerations for maintaining data integrity in cloud systems are analyzed, particularly when applying ALCOA+ principles in distributed computing environments. The article presents strategies for adapting traditional Installation Qualification (IQ), Operational Qualification (OQ), and Performance Qualification (PQ) models to cloud-based systems, highlighting the importance of continuous validation in dynamic cloud environments. The paper also explores emerging trends, including integrating artificial intelligence and edge computing in pharmaceutical manufacturing and their implications for future validation strategies. This research contributes to the evolving body of knowledge on cloud validation in pharmaceuticals by proposing a framework that balances regulatory compliance with the agility offered by cloud technologies. The findings suggest that while cloud adoption presents unique challenges, a well-structured, risk-based approach to validation can ensure the integrity and compliance of cloud-based systems in pharmaceutical manufacturing.
文摘The Zambian mining industry is crucial to the national economy but struggles with inconsistent equipment maintenance practices. This study developed an Equipment Maintenance Management Framework (EMMF) tailored to the industry’s needs. Using surveys, interviews, and on-site visits at eight major mining companies, we identified significant variations in maintenance strategies, CMMS usage, and reliability engineering. The EMMF prioritizes predictive maintenance, efficient CMMS implementation, ongoing training, and robust reliability engineering to shift from reactive to proactive maintenance. We recommend adopting continuous improvement practices and data-driven decision-making based on performance metrics, with a phased EMMF implementation aligning maintenance with strategic business objectives. This framework is poised to enhance operational efficiency, equipment reliability, and safety, fostering sustainable growth in the Zambian mining sector.