期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Metabonomic analysis of hepatitis B virus-induced liver failure:identification of potential diagnostic biomarkers by fuzzy support vector machine 被引量:11
1
作者 Yong MAO Xin HUANG +3 位作者 Ke YU Hai-bin QU Chang-xiao LIU Yi-yu CHENG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第6期474-481,共8页
Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potent... Hepatitis B virus (HBV)-induced liver failure is an emergent liver disease leading to high mortality. The severity of liver failure may be reflected by the profile of some metabolites. This study assessed the potential of using metabolites as biomarkers for liver failure by identifying metabolites with good discriminative performance for its phenotype. The serum samples from 24 HBV-indueed liver failure patients and 23 healthy volunteers were collected and analyzed by gas chromatography-mass spectrometry (GC-MS) to generate metabolite profiles. The 24 patients were further grouped into two classes according to the severity of liver failure. Twenty-five eommensal peaks in all metabolite profiles were extracted, and the relative area values of these peaks were used as features for each sample. Three algorithms, F-test, k-nearest neighbor (KNN) and fuzzy support vector machine (FSVM) combined with exhaustive search (ES), were employed to identify a subset of metabolites (biomarkers) that best predict liver failure. Based on the achieved experimental dataset, 93.62% predictive accuracy by 6 features was selected with FSVM-ES and three key metabolites, glyeerie acid, cis-aeonitie acid and citric acid, are identified as potential diagnostic biomarkers. 展开更多
关键词 Metabolite profile analysis Potential diagnostic biomarker identification k-nearest neighbor knn Fuzzy supportvector machine (FSVM) Exhaustive search (ES) Gas chromatography-mass spectrometry (GC-MS) Hepatitis B virus (HBV)-induced liver failure
下载PDF
Adaptive Fault Detection Scheme Using an Optimized Self-healing Ensemble Machine Learning Algorithm
2
作者 Levent Yavuz Ahmet Soran +2 位作者 AhmetÖnen Xiangjun Li S.M.Muyeen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第4期1145-1156,共12页
This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than usin... This paper proposes a new cost-efficient,adaptive,and self-healing algorithm in real time that detects faults in a short period with high accuracy,even in the situations when it is difficult to detect.Rather than using traditional machine learning(ML)algorithms or hybrid signal processing techniques,a new framework based on an optimization enabled weighted ensemble method is developed that combines essential ML algorithms.In the proposed method,the system will select and compound appropriate ML algorithms based on Particle Swarm Optimization(PSO)weights.For this purpose,power system failures are simulated by using the PSCA D-Python co-simulation.One of the salient features of this study is that the proposed solution works on real-time raw data without using any pre-computational techniques or pre-stored information.Therefore,the proposed technique will be able to work on different systems,topologies,or data collections.The proposed fault detection technique is validated by using PSCAD-Python co-simulation on a modified and standard IEEE-14 and standard IEEE-39 bus considering network faults which are difficult to detect. 展开更多
关键词 Decision tree(DT) ensemble machine learning algorithm fault detection islanding operation k-nearest neighbor(knn) linear discriminant analysis(LDA) logistic regression(LR) Naive Bayes(NB) self-healing algorithm
原文传递
基于K-最近邻算法的未知病毒检测 被引量:15
3
作者 张波云 殷建平 +1 位作者 张鼎兴 嵩敬波 《计算机工程与应用》 CSCD 北大核心 2005年第6期7-10,共4页
因为准确检测计算机病毒是不可判定的,故该文提出了一种基于实例学习的k-最近邻算法来实现对计算机病毒的近似检测。该法可以克服病毒特征代码扫描法不能识别未知病毒的缺点。在该检测方法的基础上,文章设计了一个病毒检测网络模型,此... 因为准确检测计算机病毒是不可判定的,故该文提出了一种基于实例学习的k-最近邻算法来实现对计算机病毒的近似检测。该法可以克服病毒特征代码扫描法不能识别未知病毒的缺点。在该检测方法的基础上,文章设计了一个病毒检测网络模型,此模型适用于实时在线系统中的病毒检测,既可以实现对已知病毒的查杀,又可以对可疑程序行为进行分析评判,最终实现对未知病毒的识别。 展开更多
关键词 计算机病毒 K-最近邻算法 病毒检测
下载PDF
基于改进的K-最近邻算法的病毒检测方法 被引量:3
4
作者 谢金晶 张艺濒 《现代电子技术》 2007年第3期51-53,共3页
由于计算机病毒检测的不可判定性,提出了一种基于改进的K最近邻检测方法来实现对计算机病毒的近似判别。此方法成功地克服了现有的特征码扫描技术只能检测已知病毒的缺点。首先改进了原始的K最近邻检测方法,使其更适合于对计算机病毒进... 由于计算机病毒检测的不可判定性,提出了一种基于改进的K最近邻检测方法来实现对计算机病毒的近似判别。此方法成功地克服了现有的特征码扫描技术只能检测已知病毒的缺点。首先改进了原始的K最近邻检测方法,使其更适合于对计算机病毒进行预测。并在此检测方法上,设计了一个病毒检测系统。此系统既可查杀已知病毒,也可分析评判可疑程序,诊断出被感染病毒以及病毒类型。 展开更多
关键词 K-最近邻算法 计算机病毒 病毒检测 INTERNET
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部