This paper summarizes the application status of computer technology in welding materials field from three aspects: the CAD of welding materials, the date base system for welding materials and the expert system for wel...This paper summarizes the application status of computer technology in welding materials field from three aspects: the CAD of welding materials, the date base system for welding materials and the expert system for welding materials .Besides, this paper explores and discusses the existing problems and the developing trend in the future.展开更多
The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classificatio...The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.展开更多
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as spac...Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.展开更多
The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our a...The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.展开更多
Molecular dynamics (MD) is a computer simulation technique that helps to explore the behavior and properties of molecules and atoms. MD has been used in research and development in many spaces, including materials sci...Molecular dynamics (MD) is a computer simulation technique that helps to explore the behavior and properties of molecules and atoms. MD has been used in research and development in many spaces, including materials science and engineering and nanotechnology. MD has been proven useful in topics like the nano-engineering of construction materials, correcting graphene planar defects, studying self-assembling bio-materials, and the densification, consolidation, and sintering of nanocrystalline materials.展开更多
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la...The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.展开更多
The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and develop...The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials.展开更多
Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive appli...Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
With the increasing demand for sustainable building design,modern building ceramic materials are one of the key factors driving innovation and development in the field of architecture,thanks to their excellent perform...With the increasing demand for sustainable building design,modern building ceramic materials are one of the key factors driving innovation and development in the field of architecture,thanks to their excellent performance and environmentally friendly properties.The aim of this study is to provide an insight into the development and application of building ceramic materials in modern architecture,and to assess the contribution of material innovation to architectural design and sustainability goals by synthesising and analysing recent technological advances and case studies in this field.This study adopts a systematic literature review approach to screen and analyse a large number of academic articles and practical project reports on material innovation in building ceramics.Comparative analyses of different material properties,advances in production processes and the effects of their application in real building projects reveal the potential of building ceramic materials to improve the energy efficiency,extend the service life and enhance the aesthetic design of buildings.The findings show that the environmental and energy issues facing traditional building materials,such as improved thermal efficiency and a reduction in the overall carbon footprint of buildings,can be effectively addressed through the use of new building ceramic materials and technologies.In addition,the innovative use of architectural ceramics provides architects with more design flexibility,enabling them to create architectural works that are both aesthetically pleasing and functional.In the concluding section,the paper highlights the importance of continuing to explore technological innovations in building ceramic materials and how these innovations can contribute to a more sustainable and environmentally friendly building industry.Future research should further explore new areas of application for ceramic materials and how interdisciplinary collaboration can accelerate the practical application of these material technologies.展开更多
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage ...Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.展开更多
The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray di...The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.展开更多
Landscape architecture engineering materials change rapidly. Glass is a kind of isotropic amorphous homogeneous non-crystal materials which are of diverse types, complex composition, plasticity, mirror property, abras...Landscape architecture engineering materials change rapidly. Glass is a kind of isotropic amorphous homogeneous non-crystal materials which are of diverse types, complex composition, plasticity, mirror property, abrasion resistance, durability and texture. Therefore, more attention should be paid on the application of land- scape materials.展开更多
The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM includin...The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical proper...Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.展开更多
Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generati...Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.展开更多
We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials ca...We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.展开更多
The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various...The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.展开更多
文摘This paper summarizes the application status of computer technology in welding materials field from three aspects: the CAD of welding materials, the date base system for welding materials and the expert system for welding materials .Besides, this paper explores and discusses the existing problems and the developing trend in the future.
基金funded by the Informatization Plan of Chinese Academy of Sciences(Grant No.CASWX2021SF-0102)the National Key R&D Program of China(Grant Nos.2022YFA1603903,2022YFA1403800,and 2021YFA0718700)+1 种基金the National Natural Science Foundation of China(Grant Nos.11925408,11921004,and 12188101)the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
文摘Chinese Space Station(CSS)has been fully deployed by the end of 2022,and the facility has entered into the application and development phase.It has conducted scientific research projects in various fields,such as space life science and biotechnology,space materials science,microgravity fundamental physics,fluid physics,combustion science,space new technologies,and applications.In this review,we introduce the progress of CSS development and provide an overview of the research conducted in Chinese Space Station and the recent scientific findings in several typical research fields.Such compelling findings mainly concern the rapid solidification of ultra-high temperature alloy melts,dynamics of fluid transport in space,gravity scaling law of boiling heat transfer,vibration fluidization phenomenon of particulate matter,cold atom interferometer technology under high microgravity and related equivalence principle testing,the full life cycle of rice under microgravity and so forth.Furthermore,the planned scientific research and corresponding prospects of Chinese space station in the next few years are presented.
基金supported by the Informatization Plan of the Chinese Academy of Sciences (Grant No. CASWX2023SF-0101)the Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-7025)+1 种基金the Youth Innovation Promotion Association CAS (Grant No. 2021167)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020000)。
文摘The prediction of chemical synthesis pathways plays a pivotal role in materials science research. Challenges, such as the complexity of synthesis pathways and the lack of comprehensive datasets, currently hinder our ability to predict these chemical processes accurately. However, recent advancements in generative artificial intelligence(GAI), including automated text generation and question–answering systems, coupled with fine-tuning techniques, have facilitated the deployment of large-scale AI models tailored to specific domains. In this study, we harness the power of the LLaMA2-7B model and enhance it through a learning process that incorporates 13878 pieces of structured material knowledge data.This specialized AI model, named Mat Chat, focuses on predicting inorganic material synthesis pathways. Mat Chat exhibits remarkable proficiency in generating and reasoning with knowledge in materials science. Although Mat Chat requires further refinement to meet the diverse material design needs, this research undeniably highlights its impressive reasoning capabilities and innovative potential in materials science. Mat Chat is now accessible online and open for use, with both the model and its application framework available as open source. This study establishes a robust foundation for collaborative innovation in the integration of generative AI in materials science.
文摘Molecular dynamics (MD) is a computer simulation technique that helps to explore the behavior and properties of molecules and atoms. MD has been used in research and development in many spaces, including materials science and engineering and nanotechnology. MD has been proven useful in topics like the nano-engineering of construction materials, correcting graphene planar defects, studying self-assembling bio-materials, and the densification, consolidation, and sintering of nanocrystalline materials.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2019MB019National Natural Science Foundation of China,Grant/Award Numbers:22075122,52071295Research Foundation for Talented Scholars of Linyi University,Grant/Award Number:Z6122010。
文摘The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.
文摘The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFB3505301)the National Natural Science Foundation of China (Grant Nos.12241403 and12174237)the Graduate Education Innovation Project in Shanxi Province (Grant No.2021Y484)。
文摘Ferroelectrics are a type of material with a polar structure and their polarization direction can be inverted reversibly by applying an electric field.They have attracted tremendous attention for their extensive applications in non-volatile memory,sensors and neuromorphic computing.However,conventional ferroelectric materials face insulating and interfacial issues in the commercialization process.In contrast,two-dimensional(2D)ferroelectric materials usually have excellent semiconductor performance,clean van der Waals interfaces and robust ferroelectric order in atom-thick layers,and hold greater promise for constructing multifunctional ferroelectric optoelectronic devices and nondestructive ultra-high-density memory.Recently,2D ferroelectrics have obtained impressive breakthroughs,showing overwhelming superiority.Herein,firstly,the progress of experimental research on 2D ferroelectric materials is reviewed.Then,the preparation of 2D ferroelectric devices and their applications are discussed.Finally,the future development trend of 2D ferroelectrics is looked at.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
基金the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202204305,and No.KJQN202305501).
文摘With the increasing demand for sustainable building design,modern building ceramic materials are one of the key factors driving innovation and development in the field of architecture,thanks to their excellent performance and environmentally friendly properties.The aim of this study is to provide an insight into the development and application of building ceramic materials in modern architecture,and to assess the contribution of material innovation to architectural design and sustainability goals by synthesising and analysing recent technological advances and case studies in this field.This study adopts a systematic literature review approach to screen and analyse a large number of academic articles and practical project reports on material innovation in building ceramics.Comparative analyses of different material properties,advances in production processes and the effects of their application in real building projects reveal the potential of building ceramic materials to improve the energy efficiency,extend the service life and enhance the aesthetic design of buildings.The findings show that the environmental and energy issues facing traditional building materials,such as improved thermal efficiency and a reduction in the overall carbon footprint of buildings,can be effectively addressed through the use of new building ceramic materials and technologies.In addition,the innovative use of architectural ceramics provides architects with more design flexibility,enabling them to create architectural works that are both aesthetically pleasing and functional.In the concluding section,the paper highlights the importance of continuing to explore technological innovations in building ceramic materials and how these innovations can contribute to a more sustainable and environmentally friendly building industry.Future research should further explore new areas of application for ceramic materials and how interdisciplinary collaboration can accelerate the practical application of these material technologies.
基金Supported by Key Project of Henan Provincial Administration of Traditional Chinese Medicine,No.2017ZY1020General Public Relations Project of Henan Provincial Department of Science and Technology,No.212102311123General Research Project of the National Administration of Traditional Chinese Medicine,No.GZY-KJS-2021-017.
文摘Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.
基金National Natural Science Foundation of China(Nos.12334010,42274121).
文摘The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.
文摘Landscape architecture engineering materials change rapidly. Glass is a kind of isotropic amorphous homogeneous non-crystal materials which are of diverse types, complex composition, plasticity, mirror property, abrasion resistance, durability and texture. Therefore, more attention should be paid on the application of land- scape materials.
基金supported by the National High Technical Reasearch and Development Programme of China(No.2002AA336100)
文摘The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.
基金supported by the Tianjin Municipal Natural Science Foundation(17JCYBJC22600)the Fundamental Research Funds for the Central Universities~~
文摘Three-dimensionally ordered macroporous(3DOM)perovskite materials have attracted the interest from researchers worldwide due to their unique macroporous structure,flexible composition,tailorable physicochemical property,high stability and biocompatibility.In particular,they were widely used in environmental field,such as photocatalysis,catalytic combustion,catalytic oxidation and sensors.In this review,the recent progresses in the synthesis of 3DOM perovskite materials and their environmental applications are summarized.The advantages and the promoting mechanisms of 3DOM perovskite materials for different applications are discussed in detail.Subsequently,the challenges and perspectives on the topic are proposed.
基金The authors acknowledge Arizona State University for the start-up funding support.
文摘Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
基金This work has been supported by the US National Institutes of Health (No. RO1-DE09848 to YW) and Natural Science Foundation of China (NSFC Nos. 29674001 and 19810760343 to KYQ and YW).
文摘We describe the sol-gel synthesis of a new family of organic-inorganic hybrid materials, in which various vinyl polymers are covalently bonded to and uniformly distributed in inorganic oxide matrices. The materials can be tailored to have both good toughness and hardness while maintaining excellent optical transparency. Doping the sol-gel metal oxides with optically active compounds such as D-glucose results in new optical rotatory composite materials. Removal of the dopant compounds from the composites affords mesoporous oxide materials; which represents a new, nonsurfactant-templated route to mesoporous molecular sieves. We have successfully immobilized a series of enzymes and other bioactive agents in mesoporous materials. Catalytical activities of the enzyme encapsulated in mesoporous materials were found to be much higher than those encapsulated in microporous materials.
文摘The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.