The significance and the strategies of applying the reliability design method of longitudinal slope length in expressway engineering were explored in this study.The objective is to offer insights that can be beneficia...The significance and the strategies of applying the reliability design method of longitudinal slope length in expressway engineering were explored in this study.The objective is to offer insights that can be beneficial for designing longitudinal slope lengths in contemporary expressway projects,with a focus on enhancing their reliability and safety.展开更多
On the basis of analysing the reliability problems existing in the general design of a kind of multioption fuze. some problems such as the reliability model. the reliability distribution of the electronic part of the ...On the basis of analysing the reliability problems existing in the general design of a kind of multioption fuze. some problems such as the reliability model. the reliability distribution of the electronic part of the fuze are discussed. For a particular multioption fuze, then.according to three different setting ways. the calculating methods of its operating reliability in six different operating states are given.展开更多
The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still inc...The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still incomplete.On the condition of having obtained the numerical characteristics of basic random parameters,several techniques and methods including the probability statistical theory,hydraulic technique and stochastic perturbation method are employed to carry out the reliability design for impact vibration of the hydraulic pressure system.Considering the instantaneous pressure pulse of hydraulic impact in pipeline,the reliability analysis model of hydraulic pipeline system is established,and the reliability-based optimization design method is presented.The proposed method can reflect the inherent reliability of hydraulic pipe system exactly,and the desired result is obtained.The reliability design of hydraulic pipeline system is achieved by computer programs and the reliability design information of hydraulic pipeline system is obtained.This research proposes a reliability design method,which can solve the problem of the reliability-based optimization design for the hydraulic pressure system with impact vibration practically and effectively,and enhance the quantitative research on the reliability design of hydraulic pipeline system.The proposed method has generality for the reliability optimization design of hydraulic pipeline system.展开更多
A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressi...A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressing history and this history should be determined by combining dynamic simulation and on-line inspection. Second, the random fatigue constitutions belong to an intrinsic fatigue phenomenon and a probabilistic model is developed to well describe them with two measurements of survival probability and confidence, similar model is also presented for the random stress-life rela- tions and extrapolated appropriately into Song fatigue life regime. Third, concept of the fatigue limit should be understood as the fatigue strength at a given fatigue life and a so-called local Basquin model method is proposed for measuring the random strengths. In addition, drawing and application methods of the Goodman-Smith diagram for integrally characterizing the random fatigue strengths are established in terms of ten kilometers. Fourth, a reliability stress-based method is constructed with a consideration of the random constitutive relations. These new advances form a new frame work for railway fatigue reliability design and analysis.展开更多
Canonical genetic algorithms have the defects of prematurity and stagnation when applied in optimization problems. The causes resulting in such phenomena were analyzed and a class of improved genetic algorithm with ni...Canonical genetic algorithms have the defects of prematurity and stagnation when applied in optimization problems. The causes resulting in such phenomena were analyzed and a class of improved genetic algorithm with niche implemented by crossover of similar individuals and ( μ+λ ) selection was proposed. According to the reliability design theory of machine components, the genetic optimization model of jack clutch was obtained. An optimization instance and some results calculated by improved genetic algorithm were presented. The results of emulations and application show that the improved genetic algorithm with the niche technique can achieve the reliable global convergence and stable convergent velocity almost without any additional calculation expense. [展开更多
With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. Thi...With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. This paper gives a introduction to a simple computer network, given the reliability of the design criteria for computer network analysis, and finally through the examples to illustrate the computer network hardware and software reliability.展开更多
Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical load...Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).展开更多
With regard to function, the strengths for interference articulation of a roller shaft formed a series system. As the three strength reliabilities conditioned each other, there was a problem for the system reliability...With regard to function, the strengths for interference articulation of a roller shaft formed a series system. As the three strength reliabilities conditioned each other, there was a problem for the system reliability to apportion rationally. In fact, there was a transition from safety to deactivation. The state of structure was fuzziness which was in both safety and non-safety states. Therefore the reliability was a fuzzy event which considered the randomness for some design parameters and the fuzziness for the thresholds between generalized strength safety and deactivation. The mathematical model of fuzzy reliability design for the interference articulation of the roller shaft was presented. Eight design examples were calculated.展开更多
Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lan...Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lander steadily for a long time.In order to assure the reliability of the landing gear and deal with the extremely severe landing conditions,many reliability measures were adopted in the design procedure,such as selection of cushion materials,optimization of mechanism configuration,design of deployment mode,allocation of buffer force and control of its variation.The successful landing on the moon of Chang'E-3 Probe has completely verified the high reliability of the landing gear.展开更多
This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of m...This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.展开更多
The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such probl...The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.展开更多
Ergonomic reliability plays a significant role in the safe operation of devices.With the spread of infectious diseases around the world,in work environments with high loads and high infection rates,medical staff work ...Ergonomic reliability plays a significant role in the safe operation of devices.With the spread of infectious diseases around the world,in work environments with high loads and high infection rates,medical staff work in a state of high self-protection.The use of visual display terminal(VDT)for medical equipment has undergone fundamental changes,and the traditional medical equipment human-machine interface design needs to be improved.After the completion of design and development,a VDT design enters the experimental testing stage,which has significant limitations for simulating the work of medical staff in the high-load and high-infection environments.The testing cost is high,and subjects face harsh conditions;thus,an ergonomic reliability model that can predict the use of VDT in such special high-infection and high-load circumstances must be established.An ergonomic reliability model based on an improved backpropagation neural network(BPNN)and human cognition reliability(HCR)is proposed for predicting and evaluating operation flows according tomedical equipment VDTs.Firstly,a small data sample can be used to train BPNN to generate a network that can ensure suitable accuracy.To prevent the model from falling into local optimal solutions,the bat algorithm is introduced to improve the BPNN.Compared to a traditional BPNN,the superiority of the improved BPNN is clearly demonstrated.Secondly,the HCR method is used to analyze and highlight changes in the human factor reliability of VDTs for medical equipment in different time processes and operating processes according to BPNN prediction results,to provide a reference for selecting the optimalmethod.Finally,the validity and availability of the proposedmethod are verified through an eye tracker experiment and statistical analysis results.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability...The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability index for offshore jacket platforms based on different sea areas in China has never been calibrated. This paper presents an approach for its calibration, and suggests many kinds of associated load cases. The uncertainties of loads and structural resistance are mainly in- vestigated. The target reliability index for structural components, tubular joints and piles of offshore jacket plaffortns are discussed respectively in detail. Finally, through the calibrated results from the offshore jacket platforms of QK18-1, JZ20-2, SZ36-1 and BZ28-1 in the Bohai Bay, it is proposed to adopt 2.8 as the target reliability index of offshore jacket platforms in the Bohai Bay for a 25-year design period. The results provide significant reference for the design of offshore jacket platforms.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints o...In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.展开更多
The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. ...The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties.展开更多
The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is d...The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is defined by introducing the probability that a facility may be prone to inactivity based on the analysis of perishable product characteristics.The perishable product SCN design problem is formulated as a 0-1 integer programming model.The objective is to minimize the weighted sum of the operating cost(the fixed plus transportation cost)and the expected failure cost.And then,the perishable product SCN design model is discussed and solved using the genetic algorithm(GA).The results show how to generate the tradeoff curve between the operating costs and the expected failure costs.And these tradeoff curves demonstrate empirically that substantial improvements in reliability are often possible with minimal increase in the operating costs.展开更多
Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. ...Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.展开更多
文摘The significance and the strategies of applying the reliability design method of longitudinal slope length in expressway engineering were explored in this study.The objective is to offer insights that can be beneficial for designing longitudinal slope lengths in contemporary expressway projects,with a focus on enhancing their reliability and safety.
文摘On the basis of analysing the reliability problems existing in the general design of a kind of multioption fuze. some problems such as the reliability model. the reliability distribution of the electronic part of the fuze are discussed. For a particular multioption fuze, then.according to three different setting ways. the calculating methods of its operating reliability in six different operating states are given.
基金supported by National Natural Science Foundation of China(Grant Nos.5113500310972088)
文摘The research of reliability design for impact vibration of hydraulic pressure pipeline systems is still in the primary stage,and the research of quantitative reliability of hydraulic components and system is still incomplete.On the condition of having obtained the numerical characteristics of basic random parameters,several techniques and methods including the probability statistical theory,hydraulic technique and stochastic perturbation method are employed to carry out the reliability design for impact vibration of the hydraulic pressure system.Considering the instantaneous pressure pulse of hydraulic impact in pipeline,the reliability analysis model of hydraulic pipeline system is established,and the reliability-based optimization design method is presented.The proposed method can reflect the inherent reliability of hydraulic pipe system exactly,and the desired result is obtained.The reliability design of hydraulic pipeline system is achieved by computer programs and the reliability design information of hydraulic pipeline system is obtained.This research proposes a reliability design method,which can solve the problem of the reliability-based optimization design for the hydraulic pressure system with impact vibration practically and effectively,and enhance the quantitative research on the reliability design of hydraulic pipeline system.The proposed method has generality for the reliability optimization design of hydraulic pipeline system.
基金Selected from Proceedings of the 7th International Conference on Frontiers of Design and Manufacturing(ICFDM'2006)This project is supported by National Natural Science Foundation of China(No.50375130,No.50575189)+1 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(No.2002034)Program for New Century Excellent Talents in University,China(No.040890).
文摘A state-of-art review is given to the new advances on fatigue reliability design and analysis methods of Chinese railway vehicle's structures. First, the structures are subject to a complicated random fatigue stressing history and this history should be determined by combining dynamic simulation and on-line inspection. Second, the random fatigue constitutions belong to an intrinsic fatigue phenomenon and a probabilistic model is developed to well describe them with two measurements of survival probability and confidence, similar model is also presented for the random stress-life rela- tions and extrapolated appropriately into Song fatigue life regime. Third, concept of the fatigue limit should be understood as the fatigue strength at a given fatigue life and a so-called local Basquin model method is proposed for measuring the random strengths. In addition, drawing and application methods of the Goodman-Smith diagram for integrally characterizing the random fatigue strengths are established in terms of ten kilometers. Fourth, a reliability stress-based method is constructed with a consideration of the random constitutive relations. These new advances form a new frame work for railway fatigue reliability design and analysis.
文摘Canonical genetic algorithms have the defects of prematurity and stagnation when applied in optimization problems. The causes resulting in such phenomena were analyzed and a class of improved genetic algorithm with niche implemented by crossover of similar individuals and ( μ+λ ) selection was proposed. According to the reliability design theory of machine components, the genetic optimization model of jack clutch was obtained. An optimization instance and some results calculated by improved genetic algorithm were presented. The results of emulations and application show that the improved genetic algorithm with the niche technique can achieve the reliable global convergence and stable convergent velocity almost without any additional calculation expense. [
文摘With the continuous development of network communication technology and computer technology, parallel computer network applications becoming more widely, its reliability has attracted more attention on researcher. This paper gives a introduction to a simple computer network, given the reliability of the design criteria for computer network analysis, and finally through the examples to illustrate the computer network hardware and software reliability.
文摘Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).
文摘With regard to function, the strengths for interference articulation of a roller shaft formed a series system. As the three strength reliabilities conditioned each other, there was a problem for the system reliability to apportion rationally. In fact, there was a transition from safety to deactivation. The state of structure was fuzziness which was in both safety and non-safety states. Therefore the reliability was a fuzzy event which considered the randomness for some design parameters and the fuzziness for the thresholds between generalized strength safety and deactivation. The mathematical model of fuzzy reliability design for the interference articulation of the roller shaft was presented. Eight design examples were calculated.
基金National Science and Technology Major Project,China
文摘Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lander steadily for a long time.In order to assure the reliability of the landing gear and deal with the extremely severe landing conditions,many reliability measures were adopted in the design procedure,such as selection of cushion materials,optimization of mechanism configuration,design of deployment mode,allocation of buffer force and control of its variation.The successful landing on the moon of Chang'E-3 Probe has completely verified the high reliability of the landing gear.
基金supported by the National Natural Science Foundation of China(Grant 52175236).
文摘This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design.The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads.The topology optimization formula is combined with the ordered solid isotropic material with penalization(ordered-SIMP)multi-material interpolation model.The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function.Furthermore,the sequential optimization and reliability assessment(SORA)is applied to transform the original uncertainty optimization problem into an equivalent deterministic topology optimization(DTO)problem.Stochastic response surface and sparse grid technique are combined with SORA to get accurate information on the most probable failure point(MPP).In each cycle,the equivalent topology optimization formula is updated according to the MPP information obtained in the previous cycle.The adjoint variable method is used for deriving the sensitivity of the stress constraint and the moving asymptote method(MMA)is used to update design variables.Finally,the validity and feasibility of the method are verified by the numerical example of L-shape beam design,T-shape structure design,steering knuckle,and 3D T-shaped beam.
基金funded by the National Natural Science Foundation of China under Grant No.52175130the Sichuan Science and Technology Program under Grants Nos.2022YFQ0087 and 2022JDJQ0024+1 种基金the Guangdong Basic and Applied Basic Research Foundation under Grant No.2022A1515240010the Students Go Abroad for Scientific Research and Internship Funding Program of University of Electronic Science and Technology of China.
文摘The escalating need for reliability analysis(RA)and reliability-based design optimization(RBDO)within engineering challenges has prompted the advancement of saddlepoint approximationmethods(SAM)tailored for such problems.This article offers a detailed overview of the general SAM and summarizes the method characteristics first.Subsequently,recent enhancements in the SAM theoretical framework are assessed.Notably,the mean value first-order saddlepoint approximation(MVFOSA)bears resemblance to the conceptual framework of the mean value second-order saddlepoint approximation(MVSOSA);the latter serves as an auxiliary approach to the former.Their distinction is rooted in the varying expansion orders of the performance function as implemented through the Taylor method.Both the saddlepoint approximation and third-moment(SATM)and saddlepoint approximation and fourth-moment(SAFM)strategies model the cumulant generating function(CGF)by leveraging the initial random moments of the function.Although their optimal application domains diverge,each method consistently ensures superior relative precision,enhanced efficiency,and sustained stability.Every method elucidated is exemplified through pertinent RA or RBDO scenarios.By juxtaposing them against alternative strategies,the efficacy of these methods becomes evident.The outcomes proffered are subsequently employed as a foundation for contemplating prospective theoretical and practical research endeavors concerning SAMs.The main purpose and value of this article is to review the SAM and reliability-related issues,which can provide some reference and inspiration for future research scholars in this field.
基金supported by National Natural Science Foundation of China (No.51905116)Basic and Applied Basic Research Foundation of Guangdong Province (Item No.2020A1515111141)+3 种基金The 13th Five-Year Plan Youth Project of Philosophy and Social Science of Guangdong Province (GD20YYS03)Science and Technology Program of Guangzhou (No.201904010463)Youth Innovative Talent Projects from Ordinary University of Guangdong Province (2019WQNCX099)Innovation Training Program for College Students in Guangdong Province (S202111078058).
文摘Ergonomic reliability plays a significant role in the safe operation of devices.With the spread of infectious diseases around the world,in work environments with high loads and high infection rates,medical staff work in a state of high self-protection.The use of visual display terminal(VDT)for medical equipment has undergone fundamental changes,and the traditional medical equipment human-machine interface design needs to be improved.After the completion of design and development,a VDT design enters the experimental testing stage,which has significant limitations for simulating the work of medical staff in the high-load and high-infection environments.The testing cost is high,and subjects face harsh conditions;thus,an ergonomic reliability model that can predict the use of VDT in such special high-infection and high-load circumstances must be established.An ergonomic reliability model based on an improved backpropagation neural network(BPNN)and human cognition reliability(HCR)is proposed for predicting and evaluating operation flows according tomedical equipment VDTs.Firstly,a small data sample can be used to train BPNN to generate a network that can ensure suitable accuracy.To prevent the model from falling into local optimal solutions,the bat algorithm is introduced to improve the BPNN.Compared to a traditional BPNN,the superiority of the improved BPNN is clearly demonstrated.Secondly,the HCR method is used to analyze and highlight changes in the human factor reliability of VDTs for medical equipment in different time processes and operating processes according to BPNN prediction results,to provide a reference for selecting the optimalmethod.Finally,the validity and availability of the proposedmethod are verified through an eye tracker experiment and statistical analysis results.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
文摘The target reliability index has been effectively used as the best solution to deal with the relationship between the structural safety and the optimal economy in any structural design. However, the target reliability index for offshore jacket platforms based on different sea areas in China has never been calibrated. This paper presents an approach for its calibration, and suggests many kinds of associated load cases. The uncertainties of loads and structural resistance are mainly in- vestigated. The target reliability index for structural components, tubular joints and piles of offshore jacket plaffortns are discussed respectively in detail. Finally, through the calibrated results from the offshore jacket platforms of QK18-1, JZ20-2, SZ36-1 and BZ28-1 in the Bohai Bay, it is proposed to adopt 2.8 as the target reliability index of offshore jacket platforms in the Bohai Bay for a 25-year design period. The results provide significant reference for the design of offshore jacket platforms.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
文摘In many practical structures, physical parameters of material and applied loads have random property.To optimize this kind of structures,an optimum mathematical model was built.This model has reliability constraints on dynamic stress and displacement and upper & lower limits of the design variables. The numerical characteristic of dynamic response and sensitivity of dynamic response based on probability of structure were deduced respectively. By equivalent disposing, the reliability constraints were changed into conventional forms. The SUMT method was used in the optimization process.Two examples illustrate the correctness and practicability of the optimum model and solving approach.
基金supported by National Natural Science Foundation of China (No. 10772070)National Basic Research Program of China (No. 2011CB013800)
文摘The present work aims to develop a method for reliability-based optimum design of composite structures. A procedure combining particle swarm optimization (PSO) and finite element analysis (FEA) has been proposed. Numerical examples for the reliability design optimization (RDO) of a laminate and a composite cylindrical shell are worked out to demonstrate the effectiveness of the method. Then a design for composite pressure vessels is studied. The advantages and necessity of RDO over the conventional equi-strength design are addressed. Examples show that the proposed method has good stability and is efficient in dealing with the probabilistic optimal design of composite structures. It may serve as an effective tool to optimize other complicated structures with uncertainties.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The classical supply chain network(SCN)design problem is extended,where the candidate facilities are subject to failure and the products are prone to elapsed time deteriorion.First,the reliable SCN design problem is defined by introducing the probability that a facility may be prone to inactivity based on the analysis of perishable product characteristics.The perishable product SCN design problem is formulated as a 0-1 integer programming model.The objective is to minimize the weighted sum of the operating cost(the fixed plus transportation cost)and the expected failure cost.And then,the perishable product SCN design model is discussed and solved using the genetic algorithm(GA).The results show how to generate the tradeoff curve between the operating costs and the expected failure costs.And these tradeoff curves demonstrate empirically that substantial improvements in reliability are often possible with minimal increase in the operating costs.
文摘Reliability optimal design is an integrated approach widely adopted in engineering. The fuze components are designed by a BP neural network combined with an optimal design approach based on their multi-failure modes. Their reliability probabilities in multi-failure modes are transformed into deterministic design parameters. The designed results by an example of optimizing the fuze spring under a certain reliability show that the integrated approach is practical and efficient.