This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital mo...Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.展开更多
Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user n...Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.展开更多
Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time ...Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.展开更多
The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein t...The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein the optical observation is aided by one-way Doppler measurements.The errors are then analyzed respectively for the optical observation and one-way Doppler measurements.The real-time calculating scheme which exploits the extended Kalman filter(EKF)framework is designed for the integrated navigation.The simulation tests demonstrate that the errors of optical navigation,which select the Mars moon as the observation target,are relatively smaller than those in the Mars-orientation optical navigation case.On one hand,the integrated navigation errors do not depend on the selecting pattern of optical observation targets.On the other hand,the integrated navigation errors are significantly reduced as compared with those in the optical-alone autonomous navigation mode.展开更多
Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to esti...Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.展开更多
Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of ...Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.展开更多
The visual navigation marks are established purposely,which transfer information to the trained observer in order to navigate.The visual aids to navigation in freshwater could give aid to navigation.In addition,throug...The visual navigation marks are established purposely,which transfer information to the trained observer in order to navigate.The visual aids to navigation in freshwater could give aid to navigation.In addition,through its basic shape,appearance forms and colors,the landscape of navigation waterway is also displayed.The aids to navigation together with channel revetment and other surrounding landscape elements determine the landscape effect of the navigation waterway.Through analyzing the design of aids to navigation features,the design impact factors,the landscape design principles and methods of treatment are proposed in this research,in order to provide some references for the design of future visual aids to navigation.展开更多
In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr...In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.展开更多
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ...There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.展开更多
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.T...With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.展开更多
Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aide...Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed.展开更多
●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospectiv...●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF.展开更多
The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can le...The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can lead to wrong location reports and time indication.In order to deal with this threat,we proposed a scheme of anti-spoofing for BDⅡ-CNAV based on integrated information authentication.This scheme generates two type authentication information,one is authentication code information(ACI),which is applied to confirm the authenticity and reliability of satellite time information,and the other is signature information,which is used to authenticate the integrity of satellite location information and other information.Both authentication information is designed to embed into the reserved bits in BDⅡ-CNAV without changing the frame structure.In order to avoid authentication failure caused by public key error or key error,the key or public key prompt information(KPKPI)are designed to remind the receiver to update both keys in time.Experimental results indicate that the scheme can successfully detect spoofing attacks,and the authentication delay is less than 1%of the transmission delay,which meets the requirements of BDⅡ-CNAV information authentication.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
Traditional machine vision algorithms have difficulty handling the interference of light and shadow changes,broken rows,and weeds in the complex growth circumstances of soybean fields,which leads to erroneous navigati...Traditional machine vision algorithms have difficulty handling the interference of light and shadow changes,broken rows,and weeds in the complex growth circumstances of soybean fields,which leads to erroneous navigation route segmentation.There are additional shortcomings in the feature extractFion capabilities of the conventional U-Net network.Our suggestion is to utilize an improved U-Net-based method to tackle these difficulties.First,we use ResNet’s powerful feature extraction capabilities to replace the original U-Net encoder.To enhance the concentration on characteristics unique to soybeans,we integrate a multi-scale high-performance attention mechanism.Furthermore,to do multi-scale feature extraction and capture a wider variety of contextual information,we employ atrous spatial pyramid pooling.The segmented image generated by our upgraded U-Net model is then analyzed using the CenterNet method to extract key spots.The RANSAC algorithm then uses these important spots to delineate the soybean seedling belt line.Finally,the navigation line is determined using the angle tangency theory.The experimental findings illustrate the superiority of our method.Our improved model significantly outperforms the original U-Net regarding mean Pixel Accuracy(mPA)and mean Intersection over Union(mIOU)indices,showing a more accurate segmentation of soybean routes.Furthermore,our soybean route navigation system’s outstanding accuracy is demonstrated by the deviation angle,which is only 3°between the actual deviation and the navigation line.This technology makes a substantial contribution to the sustainable growth of agriculture and shows potential for real-world applications.展开更多
Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a lear...Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations.We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation.This tackles the issues of topological node redundancy and incorrect edge connections,which stem from the distribution gap between the spatial and perceptual domains.Furthermore,we propose a differentiable graph extraction structure,the topology multi-factor transformer(TMFT).This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation.Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures.Comprehensive validation through behavior visualization,interpretability tests,and real-world deployment further underscore the adapt-ability and efficacy of our method.展开更多
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ...Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金supported by the National Natural Science Foundation of China(61673060)the National Key R&D Plan(2016YFB0501700)
文摘Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.
文摘Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.
基金Supported by the National Natural Nature Science Foundation of China (Grant No. 41376102), Fundamental Research Funds for the Central Universities (Gant No. HEUCF150514) and Chinese Scholarship Council (Grant No. 201406680029).
文摘Underwater terrain-aided navigation is used to complement the traditional inertial navigation employed by autonomous underwater vehicles during lengthy missions. It can provide fixed estimations by matching real-time depth data with a digital terrain map, This study presents the concept of using image processing techniques in the underwater terrain matching process. A traditional gray-scale histogram of an image is enriched by incorporation with spatial information in pixels. Edge comer pixels are then defined and used to construct an edge comer histogram, which employs as a template to scan the digital terrain map and estimate the fixes of the vehicle by searching the correlation peak. Simulations are performed to investigate the robustness of the proposed method, particularly in relation to its sensitivity to background noise, the scale of real-time images, and the travel direction of the vehicle. At an image resolution of 1 m2/pixel, the accuracy of localization is more than 10 meters.
基金the National Natural Science Foundation of China(61273090).
文摘The optical navigation errors of Mars probe in the capture stage depend closely on which targets are selected to be observed in the Mars system.As for this problem,an integrated navigation scheme is proposed wherein the optical observation is aided by one-way Doppler measurements.The errors are then analyzed respectively for the optical observation and one-way Doppler measurements.The real-time calculating scheme which exploits the extended Kalman filter(EKF)framework is designed for the integrated navigation.The simulation tests demonstrate that the errors of optical navigation,which select the Mars moon as the observation target,are relatively smaller than those in the Mars-orientation optical navigation case.On one hand,the integrated navigation errors do not depend on the selecting pattern of optical observation targets.On the other hand,the integrated navigation errors are significantly reduced as compared with those in the optical-alone autonomous navigation mode.
文摘Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.
文摘Due to the poor observability of INS ground self alignment, only horizontal alignment is satisfied. This paper proposes using GPS double difference carrier phase as external reference to improve the observability of INS self alignment. Through observability analysis and computer simulation, it is demonstrated that the azimuth alignment is as quick as horizontal alignment, the accuracy of horizontal alignment is improved, and the gyros errors can be estimated quickly and precisely.
文摘The visual navigation marks are established purposely,which transfer information to the trained observer in order to navigate.The visual aids to navigation in freshwater could give aid to navigation.In addition,through its basic shape,appearance forms and colors,the landscape of navigation waterway is also displayed.The aids to navigation together with channel revetment and other surrounding landscape elements determine the landscape effect of the navigation waterway.Through analyzing the design of aids to navigation features,the design impact factors,the landscape design principles and methods of treatment are proposed in this research,in order to provide some references for the design of future visual aids to navigation.
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.4212003)the Crossdisciplinary Collaboration Project of Beijing Municipal Science and Technology New Star Program(Grant No.202111)。
文摘In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.
基金supported by the NIBIB and the NEI of the National Institutes of Health(R01EB018117)。
文摘There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
文摘With the development of positioning technology,loca-tion services are constantly in demand by people.As a primary location service pedestrian navigation has two main approaches based on radio and inertial navigation.The pedestrian naviga-tion based on radio is subject to environmental occlusion lead-ing to the degradation of positioning accuracy.The pedestrian navigation based on micro-electro-mechanical system inertial measurement unit(MIMU)is less susceptible to environmental interference,but its errors dissipate over time.In this paper,a chest card pedestrian navigation improvement method based on complementary correction is proposed in order to suppress the error divergence of inertial navigation methods.To suppress atti-tude errors,optimal feedback coefficients are established by pedestrian motion characteristics.To extend navigation time and improve positioning accuracy,the step length in subsequent movements is compensated by the first step length.The experi-mental results show that the positioning accuracy of the pro-posed method is improved by more than 47%and 44%com-pared with the pure inertia-based method combined with step compensation and the traditional complementary filtering com-bined method with step compensation.The proposed method can effectively suppress the error dispersion and improve the positioning accuracy.
基金supported by the National Natural Science Foundation of China (62173299, U1909206)the Zhejiang Provincial Natural Science Foundation of China (LZ23F030006)+1 种基金the Joint Fund of Ministry of Education for Pre-research of Equipment (8091B022147)the Fundamental Research Funds for the Central Universities (xtr072022001)。
文摘Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed.
基金Supported by the Jiangxi Provincial Natural Science Foundation(No.20232ACB206030)。
文摘●AIM:To explore the combined application of surgical navigation nasal endoscopy(NNE)and three-dimensional printing technology(3DPT)for the adjunctive treatment of orbital blowout fractures(OBF).●METHODS:Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022.The control group consisted of patients who received traditional surgical treatment(n=43),while the new surgical group(n=52)consisted of patients who received NNE with 3DPT.The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation,best corrected visual acuity(BCVA),enophthalmos difference,recovery rate of eye movement disorder,recovery rate of diplopia,and incidence of postoperative complications.●RESULTS:The study included 95 cases(95 eyes),with 63 men and 32 women.The patients’age ranged from 5 to 67y(35.21±15.75y).The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation,BCVA and enophthalmos difference.The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo[OR=0.03,95%CI(0.01–0.15),P<0.0000]and 3mo[OR=0.11,95%CI(0.03–0.36),P<0.0000]postoperation.Additionally,the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08,95%CI(0.03–0.24),P<0.0000;and OR=0.01,95%CI(0.00–0.18),P<0.0000.The incidence of postoperative complications was lower in the new surgical group compared to the control group[OR=4.86,95%CI(0.95–24.78),P<0.05].●CONCLUSION:The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF.
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)。
文摘The BeiDou-Ⅱcivil navigation message(BDⅡ-CNAV)is transmitted in an open environment and no information integrity protection measures are provided.Hence,the BDⅡ-CNAV faces the threat of spoofing attacks,which can lead to wrong location reports and time indication.In order to deal with this threat,we proposed a scheme of anti-spoofing for BDⅡ-CNAV based on integrated information authentication.This scheme generates two type authentication information,one is authentication code information(ACI),which is applied to confirm the authenticity and reliability of satellite time information,and the other is signature information,which is used to authenticate the integrity of satellite location information and other information.Both authentication information is designed to embed into the reserved bits in BDⅡ-CNAV without changing the frame structure.In order to avoid authentication failure caused by public key error or key error,the key or public key prompt information(KPKPI)are designed to remind the receiver to update both keys in time.Experimental results indicate that the scheme can successfully detect spoofing attacks,and the authentication delay is less than 1%of the transmission delay,which meets the requirements of BDⅡ-CNAV information authentication.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金Support Project(ZRCPY201805)2023 Heilongjiang Province Key Research and Development Plan“Open the List”(2023ZXJ07B02).
文摘Traditional machine vision algorithms have difficulty handling the interference of light and shadow changes,broken rows,and weeds in the complex growth circumstances of soybean fields,which leads to erroneous navigation route segmentation.There are additional shortcomings in the feature extractFion capabilities of the conventional U-Net network.Our suggestion is to utilize an improved U-Net-based method to tackle these difficulties.First,we use ResNet’s powerful feature extraction capabilities to replace the original U-Net encoder.To enhance the concentration on characteristics unique to soybeans,we integrate a multi-scale high-performance attention mechanism.Furthermore,to do multi-scale feature extraction and capture a wider variety of contextual information,we employ atrous spatial pyramid pooling.The segmented image generated by our upgraded U-Net model is then analyzed using the CenterNet method to extract key spots.The RANSAC algorithm then uses these important spots to delineate the soybean seedling belt line.Finally,the navigation line is determined using the angle tangency theory.The experimental findings illustrate the superiority of our method.Our improved model significantly outperforms the original U-Net regarding mean Pixel Accuracy(mPA)and mean Intersection over Union(mIOU)indices,showing a more accurate segmentation of soybean routes.Furthermore,our soybean route navigation system’s outstanding accuracy is demonstrated by the deviation angle,which is only 3°between the actual deviation and the navigation line.This technology makes a substantial contribution to the sustainable growth of agriculture and shows potential for real-world applications.
基金supported in part by the National Natural Science Foundation of China (62225309,62073222,U21A20480,62361166632)。
文摘Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations.We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation.This tackles the issues of topological node redundancy and incorrect edge connections,which stem from the distribution gap between the spatial and perceptual domains.Furthermore,we propose a differentiable graph extraction structure,the topology multi-factor transformer(TMFT).This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation.Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures.Comprehensive validation through behavior visualization,interpretability tests,and real-world deployment further underscore the adapt-ability and efficacy of our method.
文摘Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively.