BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly...BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.展开更多
Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to f...Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool.展开更多
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco...Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.展开更多
Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on o...Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.展开更多
Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anteri...Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.展开更多
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w...Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.展开更多
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ...The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.展开更多
Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screenin...Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.展开更多
Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives train...Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively.展开更多
BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of...BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.展开更多
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnor...Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.展开更多
Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in ...Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.展开更多
Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]S...Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment.展开更多
Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,the...Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control.展开更多
BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been pr...BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been previously demonstrated to correlate with the proliferation and metastasis of various cancer cells,including those of PCa.Hence,verifying the association between MKI67 and the diagnosis and prognosis of PCa,using bioinformatics databases and clinical data analysis,carries significant clinical implications.AIM To explore the diagnostic and prognostic efficacy of antigens identified by MKI67 expression in PCa.METHODS For cohort 1,the efficacy of MKI67 diagnosis was evaluated using data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.For cohort 2,the diagnostic and prognostic power of MKI67 expression was further validated using data from 271 patients with clinical PCa.RESULTS In cohort 1,MKI67 expression was correlated with prostate-specific antigen(PSA),Gleason Score,T stage,and N stage.The receiver operating characteristic(ROC)curve showed a strong diagnostic ability,and the Kaplan-Meier method demonstrated that MKI67 expression was negatively associated with the progression-free interval(PFI).The time-ROC curve displayed a weak prognostic capability for MKI67 expression in PCa.In cohort 2,MKI67 expression was significantly related to the Gleason Score,T stage,and N stage;however,it was negatively associated with the PFI.The time-ROC curve revealed the stronger prognostic capability of MKI67 in patients with PCa.Multivariate COX regression analysis was performed to select risk factors,including PSA level,N stage,and MKI67 expression.A nomogram was established to predict the 3-year PFI.CONCLUSION MKI67 expression was positively associated with the Gleason Score,T stage,and N stage and showed a strong diagnostic and prognostic ability in PCa.展开更多
Breast cancer has surpassed lung cancer to become the most common malignancy worldwide.The incidence rate and mortality rate of breast cancer continue to rise,which leads to a great burden on public health.Circular RN...Breast cancer has surpassed lung cancer to become the most common malignancy worldwide.The incidence rate and mortality rate of breast cancer continue to rise,which leads to a great burden on public health.Circular RNAs(circRNAs),a new class of noncoding RNAs(ncRNAs),have been recognized as important oncogenes or suppressors in regulating cancer initiation and progression.In breast cancer,circRNAs have significant roles in tumorigenesis,recurrence and multidrug resistance that are mediated by various mechanisms.Therefore,circRNAs may serve as promising targets of therapeutic strategies for breast cancer management.This study reviews the most recent studies about the biosynthesis and characteristics of circRNAs in diagnosis,treatment and prognosis evaluation,as well as the value of circRNAs in clinical applications as biomarkers or therapeutic targets in breast cancer.Understanding the mechanisms by which circRNAs function could help transform basic research into clinical applications and facilitate the development of novel circRNA-based therapeutic strategies for breast cancer treatment.展开更多
BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE ca...BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.展开更多
Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indis...Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.展开更多
This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Cl...This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
文摘BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IF-PSAU-2021/01/18596).
文摘Aging is a natural process that leads to debility,disease,and dependency.Alzheimer’s disease(AD)causes degeneration of the brain cells leading to cognitive decline and memory loss,as well as dependence on others to fulfill basic daily needs.AD is the major cause of dementia.Computer-aided diagnosis(CADx)tools aid medical practitioners in accurately identifying diseases such as AD in patients.This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop(IWD)algorithm and the Random Forest(RF)classifier.The IWD algorithm an efficient feature selection method,was used to identify the most deterministic features of AD in the dataset.RF is an ensemble method that leverages multiple weak learners to classify a patient’s disease as either demented(DN)or cognitively normal(CN).The proposed tool also classifies patients as mild cognitive impairment(MCI)or CN.The dataset on which the performance of the proposed CADx was evaluated was sourced from the Alzheimer’s Disease Neuroimaging Initiative(ADNI).The RF ensemble method achieves 100%accuracy in identifying DN patients from CN patients.The classification accuracy for classifying patients as MCI or CN is 92%.This study emphasizes the significance of pre-processing prior to classification to improve the classification results of the proposed CADx tool.
基金Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group no.RG-21-07-01.
文摘Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR.
文摘Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.
文摘Objective To evaluate and reduce inter-observer variations in the detection and characterization of pulmonary nodules on digital radiograph (DR) chest images. Methods Two hundreds and thirty-two new posterior-anterior DR chest images were collected from out-patient screening patients. Consensus was reached by two experienced radiologists on the marking, rating, and segmentation of small actionable nodules ranged from 5 to 15 mm in diameter using a computer-aided diagnosis (CAD) system. Both their own nodule findings and the computer's automatic nodule detection results were analyzed to make the consensus. Nodules identified together with corresponding likelihood rating and segmentation results were referred as "Gold Stand- ard". Two un-experienced radiologists were asked to first mark and characterize suspicious nodules independently, then were allowed to consult the computer nodule detection results and change their decisions. Results Large inter-observer variations in pulmonary nodule identification and characterization on DR chest images were observed between un-experienced radiologists. Un-expefienced radiologists could greatly benefit from the CAD system, including substantial decrease of inter-observer variation and improvement of nodule detection rates. Moreover, radiologists with different levels of skillfulness could achieve similar high level performance after using the CAD system. Conclusion The CAD system shows a high potential for providing a valuable assistance to the examination of DR chest images.
基金via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444).
文摘Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures.
文摘The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods.
文摘Computer-aided diagnosis(CAD)models exploit artificial intelligence(AI)for chest X-ray(CXR)examination to identify the presence of tuberculosis(TB)and can improve the feasibility and performance of CXR for TB screening and triage.At the same time,CXR interpretation is a time-consuming and subjective process.Furthermore,high resemblance among the radiological patterns of TB and other lung diseases can result in misdiagnosis.Therefore,computer-aided diagnosis(CAD)models using machine learning(ML)and deep learning(DL)can be designed for screening TB accurately.With this motivation,this article develops a Water Strider Optimization with Deep Transfer Learning Enabled Tuberculosis Classification(WSODTL-TBC)model on Chest X-rays(CXR).The presented WSODTL-TBC model aims to detect and classify TB on CXR images.Primarily,the WSODTL-TBC model undergoes image filtering techniques to discard the noise content and U-Net-based image segmentation.Besides,a pre-trained residual network with a two-dimensional convolutional neural network(2D-CNN)model is applied to extract feature vectors.In addition,the WSO algorithm with long short-term memory(LSTM)model was employed for identifying and classifying TB,where the WSO algorithm is applied as a hyperparameter optimizer of the LSTM methodology,showing the novelty of the work.The performance validation of the presented WSODTL-TBC model is carried out on the benchmark dataset,and the outcomes were investigated in many aspects.The experimental development pointed out the betterment of the WSODTL-TBC model over existing algorithms.
文摘Deep neural network(DNN)based computer-aided breast tumor diagnosis(CABTD)method plays a vital role in the early detection and diagnosis of breast tumors.However,a Brightness mode(B-mode)ultrasound image derives training feature samples that make closer isolation toward the infection part.Hence,it is expensive due to a metaheuristic search of features occupying the global region of interest(ROI)structures of input images.Thus,it may lead to the high computational complexity of the pre-trained DNN-based CABTD method.This paper proposes a novel ensemble pretrained DNN-based CABTD method using global-and local-ROI-structures of B-mode ultrasound images.It conveys the additional consideration of a local-ROI-structures for further enhan-cing the pretrained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality.The features are extracted at various depths(18,50,and 101)from the global and local ROI structures and feed to support vector machine for better classification.From the experimental results,it has been observed that the combined local and global ROI structure of small depth residual network ResNet18(0.8 in%)has produced significant improve-ment in pixel ratio as compared to ResNet50(0.5 in%)and ResNet101(0.3 in%),respectively.Subsequently,the pretrained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors(Benign and Malignant)and improve the diagnostic accuracy(86%)compared to Dense Net,Alex Net,VGG Net,and Google Net.Moreover,it reduces the computational complexity due to the small depth residual network ResNet18,respectively.
基金the Foundation for Cancer Research supported by Kyoto Preventive Medical Center and the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid KAKENHI,No.JP 22K21080.
文摘BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.
基金supported by the National Natural Science Foundation of China(no.82374069)the Beijing Municipal Administration of Hospitals’Youth Program(no.QML20170105)the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support“Yangfan”Project(no.ZYLX201802)。
文摘Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.[1,2]Septic shock,the most severe form of sepsis,is characterized by circulatory and cellular/metabolic abnormalities,and can increase mortality to>40%.[1-3]Early recognition and risk stratification of septic shock are crucial but challenging because of the heterogeneity of its presentation and progression.
基金supported in part by the National Key R&D Program of China (2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China (52025056)。
文摘Dear Editor,This letter presents a novel dynamic vision enabled contactless cross-domain fault diagnosis method with neuromorphic computing.The event-based camera is adopted to capture the machine vibration states in the perspective of vision.
文摘Myocarditis is a disease process that every emergency physician fears missing.Its severity can be mild to life-threatening,and many cases are likely undetected because they are subclinical with nonspecifi c signs.[1]Subtle cardiac signs may be overshadowed by systemic symptoms of the underlying infectious process.Fever,myalgias,lethargy,symptoms commonly associated with viral syndrome,can mask the life-threatening myocarditis that may be present.In fact,in the United States Myocarditis Treatment Trial,almost 90%of patients reported symptoms consistent with a viral prodrome.[2]Ammirati et al[3]reported that 27%of patients with myocarditis had either reduced left ventricular ejection fraction,ventricular arrhythmias,or low cardiac output.Here,we present a case report,in which handheld point-of-care ultrasound was utilized at the bedside to aid in the critical diagnosis of myocarditis.With the additional information provided through this imaging modality,this patient was able to be transferred to the appropriate tertiary care facility in an expeditious manner and receive possible defi nitive treatment.
文摘Atrial fibrillation(AF)is the most common sustained cardiac arrhythmia,significantly impacting patients’quality of life and increasing the risk of death,stroke,heart failure,and dementia.Over the past two decades,there have been significant breakthroughs in AF risk prediction and screening,stroke prevention,rhythm control,catheter ablation,and integrated management.During this period,the scale,quality,and experience of AF management in China have greatly improved,providing a solid foundation for the development of guidelines for the diagnosis and management of AF.To further promote standardized AF management,and apply new technologies and concepts to clinical practice in a timely and comprehensive manner,the Chinese Society of Cardiology of the Chinese Medical Association and the Heart Rhythm Committee of the Chinese Society of Biomedical Engineering have jointly developed the Chinese Guidelines for the Diagnosis and Management of Atrial Fibrillation.The guidelines have comprehensively elaborated on various aspects of AF management and proposed the CHA2DS2-VASc-60 stroke risk score based on the characteristics of AF in the Asian population.The guidelines have also reevaluated the clinical application of AF screening,emphasized the significance of early rhythm control,and highlighted the central role of catheter ablation in rhythm control.
基金Supported by Suzhou Science and Technology Project,No.SYS2019053.
文摘BACKGROUND Prostate cancer(PCa)is a widespread malignancy,predominantly affecting elderly males,and current methods for diagnosis and treatment of this disease continue to fall short.The marker Ki-67(MKI67)has been previously demonstrated to correlate with the proliferation and metastasis of various cancer cells,including those of PCa.Hence,verifying the association between MKI67 and the diagnosis and prognosis of PCa,using bioinformatics databases and clinical data analysis,carries significant clinical implications.AIM To explore the diagnostic and prognostic efficacy of antigens identified by MKI67 expression in PCa.METHODS For cohort 1,the efficacy of MKI67 diagnosis was evaluated using data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.For cohort 2,the diagnostic and prognostic power of MKI67 expression was further validated using data from 271 patients with clinical PCa.RESULTS In cohort 1,MKI67 expression was correlated with prostate-specific antigen(PSA),Gleason Score,T stage,and N stage.The receiver operating characteristic(ROC)curve showed a strong diagnostic ability,and the Kaplan-Meier method demonstrated that MKI67 expression was negatively associated with the progression-free interval(PFI).The time-ROC curve displayed a weak prognostic capability for MKI67 expression in PCa.In cohort 2,MKI67 expression was significantly related to the Gleason Score,T stage,and N stage;however,it was negatively associated with the PFI.The time-ROC curve revealed the stronger prognostic capability of MKI67 in patients with PCa.Multivariate COX regression analysis was performed to select risk factors,including PSA level,N stage,and MKI67 expression.A nomogram was established to predict the 3-year PFI.CONCLUSION MKI67 expression was positively associated with the Gleason Score,T stage,and N stage and showed a strong diagnostic and prognostic ability in PCa.
基金supported by the Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515220184).
文摘Breast cancer has surpassed lung cancer to become the most common malignancy worldwide.The incidence rate and mortality rate of breast cancer continue to rise,which leads to a great burden on public health.Circular RNAs(circRNAs),a new class of noncoding RNAs(ncRNAs),have been recognized as important oncogenes or suppressors in regulating cancer initiation and progression.In breast cancer,circRNAs have significant roles in tumorigenesis,recurrence and multidrug resistance that are mediated by various mechanisms.Therefore,circRNAs may serve as promising targets of therapeutic strategies for breast cancer management.This study reviews the most recent studies about the biosynthesis and characteristics of circRNAs in diagnosis,treatment and prognosis evaluation,as well as the value of circRNAs in clinical applications as biomarkers or therapeutic targets in breast cancer.Understanding the mechanisms by which circRNAs function could help transform basic research into clinical applications and facilitate the development of novel circRNA-based therapeutic strategies for breast cancer treatment.
基金The Health Science and Technology Foundation of Inner Mongolia,No.202201436Science and Technology Innovation Foundation of Inner Mongolia,No.CXYD2022BT01.
文摘BACKGROUND In recent years,confocal laser endomicroscopy(CLE)has become a new endoscopic imaging technology at the microscopic level,which is extensively performed for real-time in vivo histological examination.CLE can be performed to distinguish benign from malignant lesions.In this study,we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma.CASE SUMMARY A 63-year-old woman was diagnosed with gastric mucosal lesions,which may be gastric cancer,in the small curvature of the stomach by gastroscopy.She consented to undergo CLE for morphological observation of the gastric mucosa.Through the combination of CLE diagnosis and postoperative pathology,the intraoperative CLE diagnosis was considered to be reliable.According to our experience,CLE can be performed as the first choice for the diagnosis of gastric cancer.CONCLUSION CLE has several advantages over pathological diagnosis.We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.
文摘Lithium-ion batteries have extensive usage in various energy storage needs,owing to their notable benefits of high energy density and long lifespan.The monitoring of battery states and failure identification are indispensable for guaranteeing the secure and optimal functionality of the batteries.The impedance spectrum has garnered growing interest due to its ability to provide a valuable understanding of material characteristics and electrochemical processes.To inspire further progress in the investigation and application of the battery impedance spectrum,this paper provides a comprehensive review of the determination and utilization of the impedance spectrum.The sources of impedance inaccuracies are systematically analyzed in terms of frequency response characteristics.The applicability of utilizing diverse impedance features for the diagnosis and prognosis of batteries is further elaborated.Finally,challenges and prospects for future research are discussed.
文摘This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.