BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu...Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.展开更多
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci...In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.展开更多
The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki...The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.展开更多
Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer ...Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted...BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.展开更多
Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle,...Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.展开更多
Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse ...Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.展开更多
This paper delineates the images of Jiangxi Province as tourist destination perceived by about 2000 sample visitors at Lushan Mountain and other 3 famous resorts (Jinggangshan Mountains, Longhushan Mountain, and Sanqi...This paper delineates the images of Jiangxi Province as tourist destination perceived by about 2000 sample visitors at Lushan Mountain and other 3 famous resorts (Jinggangshan Mountains, Longhushan Mountain, and Sanqingshan Mountain), with a result that the most common image is the famous scenic mountain image with partial attribute of image of religious culture destination. In order to reveal the similarities and dissimilarities of images among the four destinations, a correspondence analysis on 16 image attributes was employed. The results indicate that the tourists’ images on Longhushan Mountain, Sanqingshan Mountain and Lushan Mountain are very similar: having a lot of good tourist sites, famous mountain scenery, being close to nature and having good guide service, and others, but religious culture and good shopping facilities having not made deep impression on tourist, while Jinggangshan Mountains is famous for its red culture. The correspondence analysis visualizes the strengths and weaknesses of the destinations, which is useful for market positioning among the competitive places. Finally, some marketing suggestions for the four destinations were provided.展开更多
Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum...Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.展开更多
Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot...Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°. Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120° in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.展开更多
It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an...It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.展开更多
With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remo...With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.展开更多
The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron m...The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.展开更多
Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the ...Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.展开更多
The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a t...The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.展开更多
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring.
基金supported in part by the Guangzhou Science and Technology Plan Project under Grants 2024B03J1361,2023B03J1327,and 2023A04J0361in part by the Open Fund Project of Hubei Province Key Laboratory of Occupational Hazard Identification and Control under Grant OHIC2023Y10+3 种基金in part by the Guangdong Province Ordinary Colleges and Universities Young Innovative Talents Project under Grant 2023KQNCX036in part by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province(Climbing Plan)under Grant pdjh2024a226in part by the Key Discipline Improvement Project of Guangdong Province under Grant 2022ZDJS015in part by theResearch Fund of Guangdong Polytechnic Normal University under Grants 22GPNUZDJS17 and 2022SDKYA015.
文摘In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research.
文摘The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies.
基金National Natural Science Foundation of China(82305090)Science and Technology Commission of Shanghai Municipality(22YF1448900)Shanghai Municipal Health Commission(20234Y0168).
文摘Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金Supported by Research and Development Foundation for Major Science and Technology from Shenyang,No.19-112-4-105Big Data Foundation for Health Care from China Medical University,No.HMB201902105Natural Fund Guidance Plan from Liaoning,No.2019-ZD-0743.
文摘BACKGROUND It is evident that an accurate evaluation of T and N stage rectal cancer is essential for treatment planning.It has not been extensively investigated whether texture features derived from diffusion-weighted imaging(DWI)images and apparent diffusion coefficient(ADC)maps are associated with the extent of local invasion(pathological stage T1-2 vs T3-4)and nodal involvement(pathological stage N0 vs N1-2)in rectal cancer.AIM To predict different stages of rectal cancer using texture analysis based on DWI images and ADC maps.METHODS One hundred and fifteen patients with pathologically proven rectal cancer,who underwent preoperative magnetic resonance imaging,including DWI,were enrolled,retrospectively.The ADC measurements(ADCmean,ADCmin,ADCmax)as well as texture features,including the gray level co-occurrence matrix parameters,the gray level run-length matrix parameters and wavelet parameters were calculated based on DWI(b=0 and b=1000)images and the ADC maps.Independent sample t-tests or Mann-Whitney U tests were used for statistical analysis.Multivariate logistic regression analysis was conducted to establish the models.The predictive performance was validated by receiver operating characteristic curve analysis.RESULTS Dissimilarity,sum average,information correlation and run-length nonuniformity from DWIb=0 images,gray level nonuniformity,run percentage and run-length nonuniformity from DWIb=1000 images,and dissimilarity and run percentage from ADC maps were found to be independent predictors of local invasion(stage T3-4).The area under the operating characteristic curve of the model reached 0.793 with a sensitivity of 78.57%and a specificity of 74.19%.Sum average,gray level nonuniformity and the horizontal components of symlet transform(SymletH)from DWIb=0 images,sum average,information correlation,long run low gray level emphasis and SymletH from DWIb=1000 images,and ADCmax,ADCmean and information correlation from ADC maps were identified as independent predictors of nodal involvement.The area under the operating characteristic curve of the model reached 0.802 with a sensitivity of 80.77%and a specificity of 68.25%.CONCLUSION Texture features extracted from DWI images and ADC maps are useful clues for predicting pathological T and N stages in rectal cancer.
基金financially supported by the National Natural Science Foundation of China(No.51304076)the Natural Science Foundation of Hunan Province,China(No.14JJ4064)
文摘Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (I center dot 4.6 mm x 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 mu m. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.
基金the National Natural Science Foundation of China (No. 19675005).
文摘Multi-modality medical image fusion has more and more important applications in medical image analysis and understanding. In this paper, we develop and apply a multi-resolution method based on wavelet pyramid to fuse medical images from different modalities such as PET-MRI and CT-MRI. In particular, we evaluate the different fusion results when applying different selection rules and obtain optimum combination of fusion parameters.
文摘This paper delineates the images of Jiangxi Province as tourist destination perceived by about 2000 sample visitors at Lushan Mountain and other 3 famous resorts (Jinggangshan Mountains, Longhushan Mountain, and Sanqingshan Mountain), with a result that the most common image is the famous scenic mountain image with partial attribute of image of religious culture destination. In order to reveal the similarities and dissimilarities of images among the four destinations, a correspondence analysis on 16 image attributes was employed. The results indicate that the tourists’ images on Longhushan Mountain, Sanqingshan Mountain and Lushan Mountain are very similar: having a lot of good tourist sites, famous mountain scenery, being close to nature and having good guide service, and others, but religious culture and good shopping facilities having not made deep impression on tourist, while Jinggangshan Mountains is famous for its red culture. The correspondence analysis visualizes the strengths and weaknesses of the destinations, which is useful for market positioning among the competitive places. Finally, some marketing suggestions for the four destinations were provided.
文摘Wavelet-fractal based SAR (synthetic aperture radar) image processing is one of the advanced technologies in image processing. The main concept of analysis is that after wavelet transformation, multifractal spectrum of the signal is different from that of noise. This difference is used to alleviate the noise produced by SAR image.The method to denoise SAR image using the process based on wavelet-fractai analysis is discussed in detail. Essentially, the present method focuses on adjusting the Hoelder exponent α of multifractal spectrum. After simulation, α should be adjusted to 1.72-1.73. The more the value of α exceeds 1.73, the less distinctive the edges of SAR image become. According to the authors denoising is optimal at α=1.72-1.73. In other words, when α =1.72-1.73, a smooth and denoised SAR image is produced.
文摘Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°. Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120° in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.
基金Supported by the NationalNaturalScience Foundation of China( No. 2 0 175 0 1) and U niversity Key Teachers Programdirected under the Ministry of Education ofP.R.China( No. 2 0 0 0 - 6 5 )
文摘It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301038), Talents Recruitment Foun-dation of Nanjing University
文摘With the wide use of high-resolution remotely sensed imagery, the object-oriented remotely sensed informa- tion classification pattern has been intensively studied. Starting with the definition of object-oriented remotely sensed information classification pattern and a literature review of related research progress, this paper sums up 4 developing phases of object-oriented classification pattern during the past 20 years. Then, we discuss the three aspects of method- ology in detail, namely remotely sensed imagery segmentation, feature analysis and feature selection, and classification rule generation, through comparing them with remotely sensed information classification method based on per-pixel. At last, this paper presents several points that need to be paid attention to in the future studies on object-oriented RS in- formation classification pattern: 1) developing robust and highly effective image segmentation algorithm for multi-spectral RS imagery; 2) improving the feature-set including edge, spatial-adjacent and temporal characteristics; 3) discussing the classification rule generation classifier based on the decision tree; 4) presenting evaluation methods for classification result by object-oriented classification pattern.
基金Founded by National Basic Research Program of China(973 Program)(No.2009CB623203)National Natural Science Foundation of China(No.51078186)Jiangsu Natural Science Foundation(No.BK2010071)
文摘The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.
基金Supported by the National Natural Science Foundation of China (No. 50376042)Doctoral Program Foundation of Institute of Higher Education of China (20040425007).
文摘Based on the analysis of high-speed video images, the detachment behavior of dust cake from the ceramic candle filter surface during pulse cleaning process is investigated. The influences of the dust cake loading,the reservoir pressure, and the filtration velocity on the cleaning effectiveness are analyzed. Experimental results show that there exists an optimum dust cake thickness for pulse-cleaning process. For thin dust cake, the patchy cleaning exists and the cleaning efficiency is low; if the dust cake is too thick, the pressure drop across the dust cake becomes higher and a higher reservoir pressure may be needed. At the same time there also exists an optimum reservoir pressure for a given filtration condition.
文摘The particle morphology and surface texture play a major role in influencing mechanical and hydraulic behaviors of sandy soils. This paper presents the use of digital image analysis combined with fractal theory as a tool to quantify the particle morphology and surface texture of two types of quartz sands widely used in the region of Vitória, Espírito Santo, southeast of Brazil. The two investigated sands are sampled from different locations. The purpose of this paper is to present a simple, straightforward,reliable and reproducible methodology that can identify representative sandy soil texture parameters.The test results of the soil samples of the two sands separated by sieving into six size fractions are presented and discussed. The main advantages of the adopted methodology are its simplicity, reliability of the results, and relatively low cost. The results show that sands from the coastal spit(BS) have a greater degree of roundness and a smoother surface texture than river sands(RS). The values obtained in the test are statistically analyzed, and again it is confirmed that the BS sand has a slightly greater degree of sphericity than that of the RS sand. Moreover, the RS sand with rough surface texture has larger specific surface area values than the similar BS sand, which agree with the obtained roughness fractal dimensions. The consistent experimental results demonstrate that image analysis combined with fractal theory is an accurate and efficient method to quantify the differences in particle morphology and surface texture of quartz sands.