As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article...Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article reports on the teaching effectiveness of this system.Methods:Among 92 participants,46 were in the study group and 46 were in the 'control' group. Each student completed a multiple-choice quiz after completing 18 hours(six three-hour sessions) of the study module,and a score was recorded.The simulative training module was completed only by the study group;the 'control' group was assigned in-class discussions for the same amount of time covering the same content as the study group.The final course scores,which included both comprehensive and group task-based tests were compared between these two groups.The study used a descriptive and comparative approach for quantitative data analysis.Tests of independency between the multiple choice scores and the simulation scores were also performed.Finally,anonymous surveys were conducted.Results:The study group performed better than the 'control' group with a significantly higher average score for the group scenario task-based test score,and consequently the study group's final course score was significantly higher than the 'control' group.As per chi-square tests,no significant associations were found between the multiple choice scores and the simulated training scores.The final surveys showed students overwhelmingly agreed that STS training improved their knowledge and skills,their ability to recognize a potential critical event, and their initial response for trauma care at pre-hospital settings.The survey responses of the study group were noteworthy as they indicated that students recognized the importance of simulative training,appreciated the realism of the simulation,and were able to fight/adjust to the stressful feelings in order to focus on the task.Conclusion:Computer-based STS may be an effective teaching model to help students improve their capability in providing pre-hospital trauma care,and in their effectiveness in disaster response.展开更多
Both sea battles and testing of ship in underwater explosions reveal unacceptably poor anti-shock performance of important shipboard equipment. Anti-shock performance of shipboard equipment is a significant factor det...Both sea battles and testing of ship in underwater explosions reveal unacceptably poor anti-shock performance of important shipboard equipment. Anti-shock performance of shipboard equipment is a significant factor determining fighting strength and survivability. The anti-shock performance of a shipboard gear case based on BV043/85 was investigated using numerical simulation. A geometric model of the gear case was built using MDT software and meshed in HyperMesh software, and then the finite element model of the gear case was formed. Using ABAQUS software, the anti-shock performance of the gear case was simulated. First, shock response of typical regions of gear case was determined. Next, some generalizations were made about the anti-shock performance of the gear case by analyzing the Mises stress of typical regions varied with shock inputs. Third, weak regions were determined from simulation results. The threshold values of shock resistance of the gear case at different impulse widths were obtained through interpolating the numerical simulation results selected from the most dangerous spot. This research provides a basis for further optimization of the design of gear cases.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
BACKGROUND Fewer than 200 cases of diaphragmatic tumors have been reported in the past century. Diaphragmatic hemangiomas are extremely rare. Only nine cases have been reported in English literature to date. We report...BACKGROUND Fewer than 200 cases of diaphragmatic tumors have been reported in the past century. Diaphragmatic hemangiomas are extremely rare. Only nine cases have been reported in English literature to date. We report a case of cavernous hemangioma arising from the diaphragm. Pre-operative three-dimensional(3D)simulation and minimal invasive thoracoscopic excision were performed successfully, and we describe the radiologic findings and the surgical procedure in the following article.CASE SUMMARY A 40-year-old man was referred for further examination of a mass over the right basal lung without specific symptoms. Contrast-enhanced computed tomography revealed a poorly-enhanced lesion in the right basal lung, abutting to the diaphragm, measuring 3.1 cm × 1.5 cm in size. The mediastinum showed a clear appearance without evidence of abnormal mass or lymphadenopathy. A preoperative 3D image was reconstructed, which revealed a diaphragmatic lesion. Video-assisted thoracic surgery was performed, and a red papillary tumor was found, originating from the right diaphragm. The tumor was resected, and the pathological diagnosis was cavernous hemangioma.CONCLUSION In this rare case of diaphragmatic hemangioma, 3D image simulation was helpful for the preoperative evaluation and surgical decision making.展开更多
The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteri...The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the deve...The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.展开更多
Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to pr...Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to production strings,especially the casing perforation system,which damage the wellbore integrity and deformation to affect the subsequent fracturing.For this problem,taking the actual construction conditions and perforation technology of an oilfield in western China as an example,the structural parameters of the downhole string were measured and the wall thickness reduction model of casing perforation suitable for large-displacement sand fracturing in horizontal well section was established.With software ANSYS-FLUENT,the casing perforation erosion under the conditions of different displacements,sand content and perforation sand-passing quantity in the process of sand fracturing was simulated and calculated.The influences of three parameters on perforation erosion and expansion were analyzed and the prediction chart of the influences of three main control factors on perforation erosion and expansion was established.The perforation erosion images after fracturing construction were obtained with the downhole eagle perforation logging technology.The logging chart results were compared with the downhole eagle perforation data.The error between the established numerical simulation calculation charts and the real logging data was about 5%,indicating that the simulation charts were the valuable reference.展开更多
An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of cli...An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.展开更多
When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the...When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the real cased bomb;in contrast,the bomb case influence was ignored to reduce risk.The air explosion simulations of the MK84 warhead with and without the case were conducted.The numerical simulation results showed that the bomb case significantly influenced the shock wave generated by the bomb:the spatial distribution of shock wave in the near field changed,and the peak value of shock wave was reduced.Breakage of the case and kinetic energy of the fragmentation consumed 3 and 38% of the explosion energy,respectively.The increasing factors of the peak overpressure induced by the bare explosive on the ground and in the air were 1.43-3.04 and 1.37-1.57,respectively.Four typical stages of case breakage were defined.The mass distribution of the fragments follows the Mott distribution.The initial velocity distribution of the fragments agreed well with the Gurney equation.展开更多
While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential spec...While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential specific medicine and vaccine are still in the process of clinical trials.Currently,controlling the impact of imported cases is the key to prevent new outbreak of COVID-19 in China.In this paper,we propose two impulsive systems to describe the impact of multilateral imported cases of COVID-19.Based on the published data,we simulate and analyze the epidemic trends under different control strategies.In particular,we compare four different scenarios and show the corresponding medical burden.The results can be useful in designing appropriate control strategy for imported cases in practice.展开更多
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
文摘Objective:A computer-based STS(simulative training system) in providing pre-hospital trauma care at a disaster site was applied to teaching nursing students in the Second Military Medical University,China.This article reports on the teaching effectiveness of this system.Methods:Among 92 participants,46 were in the study group and 46 were in the 'control' group. Each student completed a multiple-choice quiz after completing 18 hours(six three-hour sessions) of the study module,and a score was recorded.The simulative training module was completed only by the study group;the 'control' group was assigned in-class discussions for the same amount of time covering the same content as the study group.The final course scores,which included both comprehensive and group task-based tests were compared between these two groups.The study used a descriptive and comparative approach for quantitative data analysis.Tests of independency between the multiple choice scores and the simulation scores were also performed.Finally,anonymous surveys were conducted.Results:The study group performed better than the 'control' group with a significantly higher average score for the group scenario task-based test score,and consequently the study group's final course score was significantly higher than the 'control' group.As per chi-square tests,no significant associations were found between the multiple choice scores and the simulated training scores.The final surveys showed students overwhelmingly agreed that STS training improved their knowledge and skills,their ability to recognize a potential critical event, and their initial response for trauma care at pre-hospital settings.The survey responses of the study group were noteworthy as they indicated that students recognized the importance of simulative training,appreciated the realism of the simulation,and were able to fight/adjust to the stressful feelings in order to focus on the task.Conclusion:Computer-based STS may be an effective teaching model to help students improve their capability in providing pre-hospital trauma care,and in their effectiveness in disaster response.
文摘Both sea battles and testing of ship in underwater explosions reveal unacceptably poor anti-shock performance of important shipboard equipment. Anti-shock performance of shipboard equipment is a significant factor determining fighting strength and survivability. The anti-shock performance of a shipboard gear case based on BV043/85 was investigated using numerical simulation. A geometric model of the gear case was built using MDT software and meshed in HyperMesh software, and then the finite element model of the gear case was formed. Using ABAQUS software, the anti-shock performance of the gear case was simulated. First, shock response of typical regions of gear case was determined. Next, some generalizations were made about the anti-shock performance of the gear case by analyzing the Mises stress of typical regions varied with shock inputs. Third, weak regions were determined from simulation results. The threshold values of shock resistance of the gear case at different impulse widths were obtained through interpolating the numerical simulation results selected from the most dangerous spot. This research provides a basis for further optimization of the design of gear cases.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘BACKGROUND Fewer than 200 cases of diaphragmatic tumors have been reported in the past century. Diaphragmatic hemangiomas are extremely rare. Only nine cases have been reported in English literature to date. We report a case of cavernous hemangioma arising from the diaphragm. Pre-operative three-dimensional(3D)simulation and minimal invasive thoracoscopic excision were performed successfully, and we describe the radiologic findings and the surgical procedure in the following article.CASE SUMMARY A 40-year-old man was referred for further examination of a mass over the right basal lung without specific symptoms. Contrast-enhanced computed tomography revealed a poorly-enhanced lesion in the right basal lung, abutting to the diaphragm, measuring 3.1 cm × 1.5 cm in size. The mediastinum showed a clear appearance without evidence of abnormal mass or lymphadenopathy. A preoperative 3D image was reconstructed, which revealed a diaphragmatic lesion. Video-assisted thoracic surgery was performed, and a red papillary tumor was found, originating from the right diaphragm. The tumor was resected, and the pathological diagnosis was cavernous hemangioma.CONCLUSION In this rare case of diaphragmatic hemangioma, 3D image simulation was helpful for the preoperative evaluation and surgical decision making.
基金Projects (50934006, 10872218) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by the National Basic Research Program of China
文摘The 3D numerical simulation model of deep hard-rock deposit in Kaiyang Phosphate Mine of Guiyang was established based on the practical engineering using 3DEC numerical simulation software. The distribution characteristics of displacement fields and plastic zones of the orebody were simulated in three different excavation cases, including the case of excavation artificial inducted roadway in the orebody, the case of horizontal or vertical excavation direction and the case of the upward or downward excavation order. The simulation results indicate that the plastic zone and displacement field of surrounding rock around the inducted roadway are continuously increasing with the increase of the exposure time after digging an artificial inducted roadway in the orebody. Thus the raw rock ore becomes easier to be fragmented, which provides advantageous conditions for roadheader to cut high stress hard-rock. It is worthy noting that there is a large difference in effective utilization of deep ground pressure between horizontal and vertical excavation directions. The later can produce larger deformation and fracture zone than the former on the rock mass around the deduced roadway, which means that the later may utilize the high ground pressure more effectively to break hard-rock. And the obtained results also show that upward excavation order is more helpful for ground pressure to break rock than downward excavation order.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
基金supported by ASIPP under contract MOU-GSI-ACC-2005-01the Special Fund of Talent Development of Anhui Province(No.2009Z056)+1 种基金the Research Fund for the Doctoral Program of Anhui University of Architecture(No.K02425)the Fund of Anhui Educational Committee(No.KJ2010B036)
文摘The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.
基金support from Sichuan Science and Technology Program(21JCQN0066)supported by National Natural Science Foundation of China(No.51774249).
文摘Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to production strings,especially the casing perforation system,which damage the wellbore integrity and deformation to affect the subsequent fracturing.For this problem,taking the actual construction conditions and perforation technology of an oilfield in western China as an example,the structural parameters of the downhole string were measured and the wall thickness reduction model of casing perforation suitable for large-displacement sand fracturing in horizontal well section was established.With software ANSYS-FLUENT,the casing perforation erosion under the conditions of different displacements,sand content and perforation sand-passing quantity in the process of sand fracturing was simulated and calculated.The influences of three parameters on perforation erosion and expansion were analyzed and the prediction chart of the influences of three main control factors on perforation erosion and expansion was established.The perforation erosion images after fracturing construction were obtained with the downhole eagle perforation logging technology.The logging chart results were compared with the downhole eagle perforation data.The error between the established numerical simulation calculation charts and the real logging data was about 5%,indicating that the simulation charts were the valuable reference.
文摘An energy production system consisting of a solar collector, biogas dry reforming reactor and solid oxide fuel cell (SOFC) was assumed to be installed in Kolkata, India. This study aims to understand the impact of climate conditions on the performance of solar collectors with different lengths of parabolic trough solar collector (dx) and mass flow rate of heat transfer fluid (m). In addition, this study has evaluated the amount of H2 produced by biogas dry reforming (GH2), the amount of power generated by SOFC (PSOFC) and the maximum number of possible households (N) whose electricity demand could be met by the energy system proposed, considering the performance of solar collector with the different dx and m. As a result, the optimum dx was found to be 4 m. This study revealed that the temperature of heat transfer fluid (Tfb) decreased with the increase in m. Tfb in March, April and May was higher than that in other months, while Tfb from June to December was the lowest. GH2, PSOFC and N in March, April and May were higher than those in other months, irrespective of m. The optimum m was 0.030 kg/s.
文摘When considering the bomb explosion damage effect,the air shock wave and high-speed fragments of the bomb case are two major threats.In experiments,the air shock wave was studied by the bare explosives superseding the real cased bomb;in contrast,the bomb case influence was ignored to reduce risk.The air explosion simulations of the MK84 warhead with and without the case were conducted.The numerical simulation results showed that the bomb case significantly influenced the shock wave generated by the bomb:the spatial distribution of shock wave in the near field changed,and the peak value of shock wave was reduced.Breakage of the case and kinetic energy of the fragmentation consumed 3 and 38% of the explosion energy,respectively.The increasing factors of the peak overpressure induced by the bare explosive on the ground and in the air were 1.43-3.04 and 1.37-1.57,respectively.Four typical stages of case breakage were defined.The mass distribution of the fragments follows the Mott distribution.The initial velocity distribution of the fragments agreed well with the Gurney equation.
基金National Natural Science Foundation of China(Grant Nos.41704116,11901234,11926104)Jilin Provincial Excellent Youth Talents Foundation(Grant No.20180520093JH)+1 种基金Scientific Research Project of Education Department of Jilin Province(Grant No.JJKH20200933KJ)Scientific Research Project of Shanghai Science and Technology Commission(Grant No.19511132000)。
文摘While the spread of COVID-19 in China is under control,the pandemic is developing rapidly around the world.Due to the normal migration of population,China is facing the high risk from imported cases.The potential specific medicine and vaccine are still in the process of clinical trials.Currently,controlling the impact of imported cases is the key to prevent new outbreak of COVID-19 in China.In this paper,we propose two impulsive systems to describe the impact of multilateral imported cases of COVID-19.Based on the published data,we simulate and analyze the epidemic trends under different control strategies.In particular,we compare four different scenarios and show the corresponding medical burden.The results can be useful in designing appropriate control strategy for imported cases in practice.