期刊文献+
共找到329篇文章
< 1 2 17 >
每页显示 20 50 100
Research progress and potential of new enhanced oil recovery methods in oilfield development
1
作者 YUAN Shiyi HAN Haishui +5 位作者 WANG Hongzhuang LUO Jianhui WANG Qiang LEI Zhengdong XI Changfeng LI Junshi 《Petroleum Exploration and Development》 SCIE 2024年第4期963-980,共18页
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl... This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies. 展开更多
关键词 oilfield development enhanced oil recovery mature oilfield shale oil improved water flooding chemical flooding gas flooding thermal recovery
下载PDF
Effect of CO_(2)flooding in an oil reservoir with strong bottom-water drive in the Tahe Oilfield,Tarim Basin,Northwest China
2
作者 Li Zhang Haiying Liao Maolei Cui 《Energy Geoscience》 EI 2024年第1期230-233,共4页
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit... The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t. 展开更多
关键词 Strong bottom-water drive reservoir CO_(2)flooding enhanced oil recovery coning of bottom water Tahe oilfield Tarim Basin Northwest China
下载PDF
Experimental investigation on using CO_(2)/H_(2)O emulsion with high water cut in enhanced oil recovery
3
作者 Xi-Dao Wu Peng Xiao +2 位作者 Bei Liu Guang-Jin Chen Jian-Hua Pang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期974-986,共13页
CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fractio... CO_(2) emulsions used for EOR have received a lot of interest because of its good performance on CO_(2)mobility reduction.However,most of them have been focusing on the high quality CO_(2) emulsion(high CO_(2) fraction),while CO_(2) emulsion with high water cut has been rarely researched.In this paper,we carried out a comprehensive experimental study of using high water cut CO_(2)/H_(2)O emulsion for enhancing oil recovery.Firstly,a nonionic surfactant,alkyl glycosides(APG),was selected to stabilize CO_(2)/H_(2)O emulsion,and the corresponding morphology and stability were evaluated with a transparent PVT cell.Subsequently,plugging capacity and apparent viscosity of CO_(2)/H_(2)O emulsion were measured systematically by a sand pack displacement apparatus connected with a 1.95-m long capillary tube.Furthermore,a high water cut(40 vol%) CO_(2)/H_(2)O emulsion was selected for flooding experiments in a long sand pack and a core sample,and the oil recovery,the rate of oil recovery,and the pressure gradients were analyzed.The results indicated that APG had a good performance on emulsifying and stabilizing CO_(2) emulsion.An inversion from H_(2)O/CO_(2) emulsion to CO_(2)/H_(2)O emulsion with the increase in water cut was confirmed.CO_(2)/H_(2)O emulsions with lower water cuts presented higher apparent viscosity,while the optimal plugging capacity of CO_(2)/H_(2)O emulsion occurred at a certain water cut.Eventually,the displacement using CO_(2)/H_(2)O emulsion provided 18.98% and 13.36% additional oil recovery than that using pure CO_(2) in long sand pack and core tests,respectively.This work may provide guidelines for EOR using CO_(2) emulsions with high water cut. 展开更多
关键词 CO_(2)/H_(2)O emulsion High water cut CO_(2) mobility control enhanced oil recovery
下载PDF
The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock 被引量:4
4
作者 Mahmood Shakiba Masoud Riazi +1 位作者 Shahab Ayatollahi Mostafa Takband 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1699-1707,共9页
Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.Th... Carbonated water injection(CWI)is known as an efficient technique for both CO2 storage and enhanced oil recovery(EOR).During CWI process,CO2 moves from the water phase into the oil phase and results in oil swelling.This mechanism is considered as a reason for EOR.Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials.Generally,instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon.Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction.Therefore,higher in-situ water content can worsen this condition.Besides,this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion,which results in EOR reduction.On the other hand,from gas storage point of view,it should be noted that CO2 solubility is not the same in the water and oil phases.In this study for a specified water salinity,the effects of different connate water saturations(Swc)on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir.The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation,as 14%reduction of Swc resulted in 20%and 16%higher oil recovery and CO2 storage capacity,respectively. 展开更多
关键词 Carbonated water Connate water CARBONATE RESERVOIR enhanced oil recovery Secondary recovery CO2 storage
下载PDF
Hybrid low salinity water and surfactant process for enhancing heavy oil recovery
5
作者 ROLDÁN-CARRILLO Teresa CASTORENA-CORTES Gladys +3 位作者 SALAZAR CASTILLO Rodrigo Orlando HERNÁNDEZ-ESCOBEDO Luis OLGUÍN-LORA Patricia GACHUZ-MURO Herón 《Petroleum Exploration and Development》 SCIE 2023年第6期1466-1477,共12页
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st... Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant. 展开更多
关键词 low salinity water flooding surfactant flooding hybrid processes enhanced oil recovery TOMOGRAPHY
下载PDF
Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs
6
作者 WANG Jing QI Xiangsheng +4 位作者 LIU Huiqing YANG Min LI Xiaobo LIU Hongguang ZHANG Tuozheng 《Petroleum Exploration and Development》 CSCD 2022年第5期1110-1125,共16页
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v... To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity. 展开更多
关键词 fractured-vuggy reservoir water flooding remaining oil reversing water injection stimulation mechanism enhanced oil recovery 3D printing
下载PDF
Performance of low-salinity water flooding for enhanced oil recovery improved by SiO_2 nanoparticles 被引量:7
7
作者 Tangestani Ebrahim Vafaie Sefti Mohsen +2 位作者 Shadman Mohammad Mahdi Kazemi Tooseh Esmaeel Ahmadi Saeb 《Petroleum Science》 SCIE CAS CSCD 2019年第2期357-365,共9页
Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, th... Low-salinity water injection has been utilized as a promising method for oil recovery in recent years. Low-salinity water flooding changes the ion composition or brine salinity for improving oil recovery. Recently, the application of nanoparticles with low-salinity water flooding has shown remarkable results in enhanced oil recovery(EOR). Many studies have been performed on the effect of nanofluids on EOR mechanisms. Their results showed that nanofluids can improve oil recovery when used in low-salinity water flooding. In this work, the effects of injection of low-salinity water and low-salinity nanofluid(prepared by adding SiO_2 nanoparticles to low-salinity water) on oil recovery were investigated. At first, the effects of ions were investigated with equal concentrations in low-salinity water flooding. The experimental results showed that the monovalent ions had better performance than the divalent ions because of them having more negative zeta potential and less ionic strength. Also, low-salinity water flooding recovered 6.1% original oil in place(OOIP) more than the high-salinity flooding. Contact angle measurements demonstrated that low-salinity water could reduce the contact angle between oil and water. Then in the second stage, experiments were continued by adding SiO_2 nanoparticles to the K+ solution which had the highest oil recovery at the first stage. The experimental results illustrated that the addition of Si02 nanoparticles up to 0.05 wt% increased oil recovery by about 4% OOIP more than the low-salinity water flooding. 展开更多
关键词 enhanced oil recovery Low-salinity water Low-salinity NANOFLUID ZETA potential
下载PDF
Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water 被引量:5
8
作者 Mohammad Reza Zaeri Rohallah Hashemi +1 位作者 Hamidreza Shahverdi Mehdi Sadeghi 《Petroleum Science》 SCIE CAS CSCD 2018年第3期564-576,共13页
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the ef... An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity,permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments. 展开更多
关键词 enhanced oil recovery Spontaneous imbibition Low salinity water Wettability alteration Carbonate rocks
下载PDF
How much would silica nanoparticles enhance the performance of low-salinity water flooding? 被引量:3
9
作者 Amir Hossein Saeedi Dehaghani Reza Daneshfar 《Petroleum Science》 SCIE CAS CSCD 2019年第3期591-605,共15页
Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to b... Nanofluids and low-salinity water(LSW)flooding are two novel techniques for enhanced oil recovery.Despite some efforts on investigating benefits of each method,the pros and cons of their combined application need to be evaluated.This work sheds light on performance of LSW augmented with nanoparticles through examining wettability alteration and the amount of incremental oil recovery during the displacement process.To this end,nanofluids were prepared by dispersing silica nanoparticles(0.1 wt%,0.25 wt%,0.5 wt% and 0.75 wt%)in 2,10,20 and 100 times diluted samples of Persian Gulf seawater.Contact angle measurements revealed a crucial role of temperature,where no wettability alteration occurred up to 80 ℃.Also,an optimum wettability state(with contact angle 22°)was detected with a 20 times diluted sample of seawater augmented with 0.25 wt% silica nanoparticles.Also,extreme dilution(herein 100 times)will be of no significance.Throughout micromodel flooding,it was found that in an oil-wet condition,a combination of silica nanoparticles dispersed in 20 times diluted brine had the highest displacement efficiency compared to silica nanofluids prepared with deionized water.Finally,by comparing oil recoveries in both water-and oil-wet micromodels,it was concluded that nanoparticles could enhance applicability of LSW via strengthening wettability alteration toward a favorable state and improving the sweep efficiency. 展开更多
关键词 Low-salinity water Silica nanoparticles Low-salinity NANOFLUID MICROMODEL enhanced oil recovery Wettability alteration
下载PDF
Enhancing the spontaneous imbibition rate of water in oil-wet dolomite rocks through boosting a wettability alteration process using carbonated smart brines 被引量:5
10
作者 Ehsan Ghandi Rafat Parsaei Masoud Riazi 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1361-1373,共13页
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a... Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery. 展开更多
关键词 Spontaneous imbibition Carbonated smart water Wettability alteration enhanced oil recovery Dolomite rocks
下载PDF
Wettability alteration analysis of smart water/novel functionalized nanocomposites for enhanced oil recovery
11
作者 Sara Habibi Arezou Jafari Zahra F.akhroueian 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1318-1328,共11页
Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles ha... Smart water flooding,as a popular method to change the wettability of carbonate rocks,is one of the interesting and challenging issues in reservoir engineering.In addition,the recent studies show that nanoparticles have a great potential for application in EOR processes.However,little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery.In this study,stability,contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO4^2- and Ca^2+ ions in the presence of nanofluid on EOR processes.The amine/organosiloxane@Al2O3/SiO2(AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here.However,for the first time the application of this nanocomposite along with smart water has been studied in this research.Results show that by increasing the concentrations of calcium and sulfate ions in smart water,oil recovery is improved by 9% and 10%,respectively,compared to seawater.In addition,the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery.Finally,the best performance was observed in smart water containing two times of sulfate ions concentration(SW2 S) with nanofluids,showing increased efficiency of about 7.5%. 展开更多
关键词 Smart water NANOFLUID Wettability alteration Contact angle STABILITY enhanced oil recovery
下载PDF
Application of ion-engineered Persian Gulf seawater in EOR:effects of different ions on interfacial tension,contact angle,zeta potential,and oil recovery
12
作者 Amir Hossein Saeedi Dehaghani Seyed Masoud Ghalamizade Elyaderani 《Petroleum Science》 SCIE CAS CSCD 2021年第3期895-908,共14页
In this study,we initially performed interfacial tension(IFT)tests to investigate the potential of using the Persian Gulf seawater(PGSW)as smart water with diferent concentrations of NaCl,KCl,MgCl_(2),CaCl_(2),and Na_... In this study,we initially performed interfacial tension(IFT)tests to investigate the potential of using the Persian Gulf seawater(PGSW)as smart water with diferent concentrations of NaCl,KCl,MgCl_(2),CaCl_(2),and Na_(2)SO_(4).Next,for each salt,at the concentration where IFT was minimum,we conducted contact angle,zeta potential,and micromodel fooding tests.The results showed that IFT is minimized if NaCl or KCl is removed from PGSW;thus,for solutions lacking NaCl and KCl,the IFT values were obtained at 26.29 and 26.56 mN/m,respectively.Conversely,in the case of divalent ions,minimum IFT occurred when the concentration of MgCl_(2),CaCl_(2),and Na_(2)SO_(4) in PGSW increased.Specifcally,a threefold rise in the concentration of Na_(2)SO_(4) further reduced IFT as compared to optimal concentrations of MgCl_(2) or CaCl_(2).It should be mentioned that eliminating NaCl from PGSW resulted in the lowest IFT value compared to adding or removing other ions.Whereas the removal of NaCl caused the contact angle to decrease from 91.0°to 67.8°relative to PGSW and changed surface wettability to weakly water-wet,eliminating KCl did not considerably change the contact angle,such that it only led to a nine-degree reduction in this angle relative to PGSW and left wettability in the same neutral-wet condition.At optimal concentrations of MgCl_(2),CaCl_(2),and Na_(2)SO_(4),only an increase in Na_(2)SO_(4) concentration in PGSW could change wettability from neutral-wet to weakly water-wet.For solutions with optimal concentrations,the removal of NaCl or KCl caused the rock surface to have slightly higher negative charges,and increasing the concentration of divalent ions led to a small reduction in the negative charge of the surface.The results of micromodel fooding indicated that NaCl-free PGSW could raise oil recovery by 10.12%relative to PGSW.Furthermore,when the Na_(2)SO_(4) concentration in PGSW was tripled,the oil recovery increased by 7.34%compared to PGSW.Accordingly,depending on the conditions,it is possible to use PGSW so as to enhance the efciency of oil recovery by removing NaCl or by increasing the concentration of Na_(2)SO_(4) three times. 展开更多
关键词 Smart water Minimum IFT WETTABILITY Zeta potential enhanced oil recovery
下载PDF
Using cyclic alternating water injection to enhance oil recovery for carbonate reservoirs developed by linear horizontal well pattern
13
作者 LI Yong ZHAO Limin +5 位作者 WANG Shu SUN Liang ZHANG Wenqi YANG Yang HU Dandan CHEN Yihang 《Petroleum Exploration and Development》 CSCD 2021年第5期1139-1151,共13页
In view of high water cut and low oil recovery caused by the unidirectional flow in linear pattern of horizontal wells for the carbonate reservoirs in the Middle East,this paper provides a novel approach to improve oi... In view of high water cut and low oil recovery caused by the unidirectional flow in linear pattern of horizontal wells for the carbonate reservoirs in the Middle East,this paper provides a novel approach to improve oil recovery by converting linear water injection to cyclic alternating water injection patterns including cyclic alternating water injection with apparent inverted seven-spot pattern or apparent five-spot pattern and cyclic differential alternating water injection.The main advantage of using this strategy is that the swept efficiency is improved by changing injection-production streamlines and displacement directions,which means displacement from two different direction for the same region during a complete cycle.This technology is effective in increasing the swept efficiency and tapping the remaining oil,thus resulting in higher oil recovery.Field application with three new patterns in a carbonate reservoir in the Middle East is successful.By optimizing injection and production parameters based on the cyclic alternating well pattern,the test well group had a maximum increase of daily oil production per well of 23.84 m^(3) and maximum water cut drop of 18%.By further optimizing the distance(keep a long distance)between the heels of injection and production wells,the waterflooding performance could be better with water cut decreasing and oil production increasing. 展开更多
关键词 carbonate reservoirs horizontal well pattern cyclic alternating water injection displacement direction enhanced oil recovery Middle East
下载PDF
Factors influencing oil recovery by surfactant-polymer flooding in conglomerate reservoirs and its quantitative calculation method 被引量:1
14
作者 Feng-Qi Tan Chun-Miao Ma +2 位作者 Jian-Hua Qin Xian-Kun Li Wen-Tao Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1198-1210,共13页
This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flood... This study aims to clarify the factors influencing oil recovery of surfactant-polymer(SP)flooding and to establish a quantitative calculation model of oil recovery during different displacement stages from water flooding to SP flooding.The conglomerate reservoir of the Badaowan Formation in the seventh block of the Karamay Oilfield is selected as the research object to reveal the start-up mechanism of residual oil and determine the controlling factors of oil recovery through SP flooding experiments of natural cores and microetching models.The experimental results are used to identify four types of residual oil after water flooding in this conglomerate reservoir with a complex pore structure:oil droplets retained in pore throats by capillary forces,oil cluster trapped at the junction of pores and throats,oil film on the rock surface,isolated oil in dead-ends of flow channel.For the four types of residual oil identified,the SP solution can enhance oil recovery by enlarging the sweep volume and improving the oil displacement efficiency.First,the viscosity-increasing effect of the polymer can effectively reduce the permeability of the displacement liquid phase,change the oil-water mobility ratio,and increase the water absorption.Furthermore,the stronger the shear drag force of the SP solution,the more the crude oil in a porous medium is displaced.Second,the surfactant can change the rock wettability and reduce the absorption capacity of residual oil by lowering interfacial tension.At the same time,the emulsification further increases the viscosity of the SP solution,and the residual oil is recovered effectively under the combined effect of the above two factors.For the four start-up mechanisms of residual oil identified after water flooding,enlarging the sweep volume and improving the oil displacement efficiency are interdependent,but their contribution to enhanced oil recovery are different.The SP flooding system primarily enlarges the sweep volume by increasing viscosity of solution to start two kinds of residual oil such as oil droplet retained in pore throats and isolated oil in dead-ends of flow channel,and primarily improves the oil displacement efficiency by lowing interfacial tension of oil phase to start two kinds of residual oil such as oil cluster trapped at the junction of pores and oil film on the rock surface.On this basis,the experimental results of the oil displacement from seven natural cores show that the pore structure of the reservoir is the main factor influencing water flooding recovery,while the physical properties and original oil saturation have relatively little influence.The main factor influencing SP flooding recovery is the physical and chemical properties of the solution itself,which primarily control the interfacial tension and solution viscosity in the reservoir.The residual oil saturation after water flooding is the material basis of SP flooding,and it is the second-most dominant factor controlling oil recovery.Combined with the analysis results of the influencing factors and reservoir parameters,the water flooding recovery index and SP flooding recovery index are defined to further establish quantitative calculation models of oil recovery under different displacement modes.The average relative errors of the two models are 4.4%and 2.5%,respectively;thus,they can accurately predict the oil recovery of different displacement stages and the ultimate reservoir oil recovery. 展开更多
关键词 Conglomerate reservoir water flooding Surfactant-polymer flooding Residual oil type Influencing factor enhanced oil recovery Computational model
下载PDF
An experimental and numerical study of chemically enhanced water alternating gas injection 被引量:2
15
作者 Saeed Majidaie Mustafa Onur Isa M.Tan 《Petroleum Science》 SCIE CAS CSCD 2015年第3期470-482,共13页
In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. ... In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized. 展开更多
关键词 enhanced water alternating gas (CWAG) enhanced oil recovery Interfacial tension Mobilitycontrol ~ water blocking
下载PDF
Theories and practices of carbonate reservoirs development in China 被引量:2
16
作者 LI Yang KANG Zhijiang +1 位作者 XUE Zhaojie ZHENG Songqing 《Petroleum Exploration and Development》 2018年第4期712-722,共11页
Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical break... Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield. 展开更多
关键词 CARBONATE RESERVOIR RESERVOIR formation compound flow water FLOODING gas FLOODING acid FRACTURING STIMULATION enhanced oil recovery
下载PDF
Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China 被引量:2
17
作者 YU Qiannan LIU Yikun +3 位作者 LIANG Shuang TAN Shuai SUN Zhi YU Yang 《Petroleum Exploration and Development》 2019年第6期1206-1217,共12页
Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.... Experiments on surface-active polymer flooding for enhanced oil recovery were carried out by detection analysis and modern physical simulation technique based on reservoirs and fluids in Daqing placanticline oilfield.The experimental results show that the surface-active polymer is different from other common polymers and polymer-surfactant systems in molecular aggregation,viscosity and flow capacity,and it has larger molecular coil size,higher viscosity and viscosifying capacity,and poorer mobility.The surface-active polymer solution has good performance of viscosity-increasing and viscosity retention,and has good performance of viscoelasticity and deformability to exert positive effects of viscosifying and viscoelastic properties.Surface-active polymer can change the chemical property of interface and reduce interfacial tension,making the reservoir rock turn water-wet,also it can emulsify the oil into relatively stable oil-in-water emulsion,and emulsification capacity is an important property to enhance oil washing efficiency under non-ultralow interfacial tension.The surface-active polymer flooding enlarges swept volume in two ways:Microscopically,the surface-active polymer has mobility control effect and can enter oil-bearing pores not swept by water to drive residual oil,and its mobility control effect has more contribution than oil washing capacity in enhancing oil recovery.Macroscopically,it has plugging capacity,and can emulsify and plug the dominant channels in layers with high permeability,forcing the injected fluid to enter the layer with medium or low permeability and low flow resistance,and thus enlarging swept volume. 展开更多
关键词 high water-cut oilFIELD reservoir surface-active polymer oil-washing efficiency swept volume plug by EMULSIFICATION enhanced oil recovery
下载PDF
Compatibility evaluation of modified seawater for EOR in carbonate reservoirs through the introduction of polyphosphate compound
18
作者 Bisweswar Ghosh Liying Sun Nithin Chacko Thomas 《Petroleum Science》 SCIE CAS CSCD 2020年第2期393-408,共16页
Waterflood-assisted oil recovery with sulfate-spiked seawater would cause incompatibility scaling in carbonate reservoirs and reduce economic benefits.This research investigated the benefits of polyphosphate compounds... Waterflood-assisted oil recovery with sulfate-spiked seawater would cause incompatibility scaling in carbonate reservoirs and reduce economic benefits.This research investigated the benefits of polyphosphate compounds in reducing scaling potential as well as its effect on oil recovery when mixed in high sulfate flood water.Severity of scaling potential of sulfate-spiked water in a carbonate reservoir environment was measured,followed by systematic screening of a polyphosphate compound,which successfully inhibited the sulfate scale precipitation at concentration as low as 100 ppm.The new formulation(seawater with four times sulfate and phosphate,SW4 SP)was evaluated and compared with benchmark formulation(modified seawater with four times sulfate,SW4 S).Contact angle,ζ-potential and drainage studies show that SW4 SP changed the rock wettability from oil wet to water wet to a larger degree compared to SW4 S.Improved recovery efficiency of SW4 SP was confirmed through a set of core flooding studies in the tertiary and quaternary flood modes.Whereas SW4 S recovered 7.7%of original oil in place(OOIP),SW4 SP recovered about 8%of OOIP in the tertiary mode under approximately identical flow conditions.Flooding with SW4 SP in the quaternary mode following a tertiary flood with SW4 S on the same core resulted in 1.7%additional oil recovery,showing improved efficiency of the new flood water formulation. 展开更多
关键词 INCOMPATIBILITY SCALING SODIUM trimetaphosphate(SHMP) Smart waterflood Scale INHIBITOR water compatibility enhanced oil recovery
下载PDF
Activating solution gas drive as an extra oil production mechanism after carbonated water injection 被引量:2
19
作者 Mahmood Shakiba Shahab Ayatollahi Masoud Riazi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2938-2945,共8页
Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been conside... Enhanced oil recovery(EOR)methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases.Over the last decade,carbonated water injection(CWI)has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency.During CWI process,as the reservoir pressure declines,the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur.As a result,it can lead to oil saturation restoration and subsequently,oil displacement due to the hysteresis effect.At this condition,CO2 would act as insitu dissolved gas into the oil phase,and play the role of an artificial solution gas drive(SGD).In this study,the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI(SCWI-TCWI)modes has been experimentally investigated in carbonate rocks using coreflood tests.The depressurization tests resulted in more than 25%and 18%of original oil in place(OOIP)because of the SGD after SCWI and TCWI tests,respectively.From the ultimate enhanced oil recovery point of view,the efficiency of SGD was observed to be more than one-third of that of CWI itself.Furthermore,the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production. 展开更多
关键词 Solution gas drive Gas nucleation Carbonated water enhanced oil recovery CO2 capture
下载PDF
A review on the mechanisms of low salinity water/surfactant/nanoparticles and the potential synergistic application for c-EOR
20
作者 Stanley Sim Sze Lim Henry Elochukwu +2 位作者 Jobrun Nandong Ziad Bennour Mohamed Ali Hamid 《Petroleum Research》 EI 2023年第3期324-337,共14页
Chemical enhanced oil recovery(c-EOR)is a conventional and promising strategy to recover oil from reservoir techniques such as low salinity water flooding(LSWF),surfactant flooding,alkaline flooding,polymers flooding,... Chemical enhanced oil recovery(c-EOR)is a conventional and promising strategy to recover oil from reservoir techniques such as low salinity water flooding(LSWF),surfactant flooding,alkaline flooding,polymers flooding,and nanofluid flooding.The use of various types of chemical materials for c-EOR method has recently attracted the attention of the oil and gas industry.The primary objective of this review work is to explore the synergy of low salinity water/surfactant/nanoparticle flooding for effective c-EOR method and investigate the mechanism behind these methods.The advantages of combining these chemical materials for c-EOR methods is also reviewed.Challenges and limitations of this synergy and their economic feasibility for additional oil recovery and potential return on investment are reviewed.Nanoparticles have been successfully used in various applications in several industries and have also shown good application for EOR in terms of wettability alteration.LSWF contributes to wettability alteration,while surfactant contributes to wettability alteration and interfacial tension(IFT)reduction.However,fines migration caused by LSWF and nanoparticle agglomeration can cause formation damage,while excessive surfactant adsorption can lead to cost overrun on surfactant use.Understanding the characteristics of reservoir formation mineralogy and appropriate nanoparticle type,size,and concentration can be used to resolve this challenges.The synergy of LSWF and nanoparticles in alkaline medium can serve as sacrificial agent to reduce excessive surfactant loss.Therefore,the appropriate synergistic formulation of LSFW/surfactant/nanoparticle can improve additional oil recovery and support return on investment for c-EOR projects. 展开更多
关键词 SURFACTANT Low salinity water NANOPARTICLES NANOFLUID enhanced oil recovery
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部