We report a rationally designed one-pot method for the facile synthesis of Pd concave nanocubes in an aqueous solution at room temperature by manipulating the reduction kinetics through the selection of a proper combi...We report a rationally designed one-pot method for the facile synthesis of Pd concave nanocubes in an aqueous solution at room temperature by manipulating the reduction kinetics through the selection of a proper combination of a salt precursor (PdBr4^2-) and reductant (sodium ascorbate). Our kinetic analysis demonstrates that, through this selection, the nucleation and growth of Pd nanocrystals could be effectively separated into two kinetic regimes involving distinctive reduction pathways: i) solution reduction for the initial formation of single-crystal seeds and ii) surface reduction for the formation of concave nanocrystals via autocatalytic growth from the single-crystal seeds. The suppressed surface diffusion at room temperature, when coupled with the capping effect of bromide ions, ultimately leads to the formation of concave nanocubes with an asymmetric shape and high-index facets, whose synthesis would otherwise require multiple steps and the use of elevated temperatures.展开更多
文摘We report a rationally designed one-pot method for the facile synthesis of Pd concave nanocubes in an aqueous solution at room temperature by manipulating the reduction kinetics through the selection of a proper combination of a salt precursor (PdBr4^2-) and reductant (sodium ascorbate). Our kinetic analysis demonstrates that, through this selection, the nucleation and growth of Pd nanocrystals could be effectively separated into two kinetic regimes involving distinctive reduction pathways: i) solution reduction for the initial formation of single-crystal seeds and ii) surface reduction for the formation of concave nanocrystals via autocatalytic growth from the single-crystal seeds. The suppressed surface diffusion at room temperature, when coupled with the capping effect of bromide ions, ultimately leads to the formation of concave nanocubes with an asymmetric shape and high-index facets, whose synthesis would otherwise require multiple steps and the use of elevated temperatures.