The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means o...The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.展开更多
In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ...In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.展开更多
In this paper, a class of semilinear elliptic equations with sublinear and superlinear nonlinearities in R-N is studied. By making use of variational method and L-infinity estimation, the authors obtain some results a...In this paper, a class of semilinear elliptic equations with sublinear and superlinear nonlinearities in R-N is studied. By making use of variational method and L-infinity estimation, the authors obtain some results about existence of multiple positive solutions and asymptotic behavior of the solutions.展开更多
In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a...In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.展开更多
This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅)...This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.展开更多
Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,an...Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,and then uses sampling border to obtain coordinates sequence of discrete boundary points. Each sampling point of the discrete border is determined to be either concave or convex according to the value of vector product. Two inflexions can be searched by the change of concavo-convex trend. The region between two inflexions is defined as concave area. The values of distance are calculated between all boundary points on the concave area and a straight line connected by two inflexions. The boundary point corresponding to the greatest distances is max concave vertex,or the object’s concave vertex. Experimental results have proved that the new algorithm can extract the max concave vertexes of an object accurately and reliably.展开更多
As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that ...As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that this stratification re-flects the stratified convexity/concavity of the boundary ?with respect to the ?v-flow. We study the behavior of this stratification under deformations of the vector field v. We also investigate the restrictions that the existence of a convex/concave traversing ?v-flow imposes on the topology of X. Let be the orthogonal projection of on the tangent bundle of . We link the dynamics of theon the boundary with the property of in X being convex/concave. This linkage is an instance of more general phenomenon that we call “holography of traversing fields”—a subject of a different paper to follow.展开更多
An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vert...An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.展开更多
基金supported by NSFC(10771085)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 Program of Jilin University
文摘The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.
文摘In this paper, we deal with the existence and multiplicity of positive solutions for the quasilinear elliptic problem -△pu-∑i=1^kμi|u|^p-2/|x-ai|p^u=|u|^p^*-2u+λ|u|^q-2u,x∈Ω,where Ω belong to R^N(N ≥ 3) is a smooth bounded domain such that the different points ai∈Ω,i= 1,2,...,k,0≤μi〈μ^-=(N-p/p)^p,λ〉0,1≤q〈p,and p^*=p^N/N-p.The results depend crucially cn the parameters λ,q and μi for i=1,2,...,k.
文摘In this paper, a class of semilinear elliptic equations with sublinear and superlinear nonlinearities in R-N is studied. By making use of variational method and L-infinity estimation, the authors obtain some results about existence of multiple positive solutions and asymptotic behavior of the solutions.
文摘In this paper, we studied the combined effect of concave and convex nonlinearities on the number of positive solutions for a semilinear elliptic system. We prove the existence of at least four positive solutions for a semilinear elliptic system involving concave and convex nonlinearities by using the Nehari manifold and the center mass function.
文摘This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.
基金Supported by Natural Science Foundation of Guangdong Province (No.8451051501000501)the Science and Technology Projects of Guangdong Province (No.2009B-010800029)
文摘Concave vertex of an object is an important parameter for analyzing an object’s shape. A new algorithm for searching concave vertex is proposed in this paper. The new algorithm requires tracking the border firstly,and then uses sampling border to obtain coordinates sequence of discrete boundary points. Each sampling point of the discrete border is determined to be either concave or convex according to the value of vector product. Two inflexions can be searched by the change of concavo-convex trend. The region between two inflexions is defined as concave area. The values of distance are calculated between all boundary points on the concave area and a straight line connected by two inflexions. The boundary point corresponding to the greatest distances is max concave vertex,or the object’s concave vertex. Experimental results have proved that the new algorithm can extract the max concave vertexes of an object accurately and reliably.
文摘As has been observed by Morse [1], any generic vector field v on a compact smooth manifold X with boundary gives rise to a stratification of the boundary by compact submanifolds , where . Our main observation is that this stratification re-flects the stratified convexity/concavity of the boundary ?with respect to the ?v-flow. We study the behavior of this stratification under deformations of the vector field v. We also investigate the restrictions that the existence of a convex/concave traversing ?v-flow imposes on the topology of X. Let be the orthogonal projection of on the tangent bundle of . We link the dynamics of theon the boundary with the property of in X being convex/concave. This linkage is an instance of more general phenomenon that we call “holography of traversing fields”—a subject of a different paper to follow.
文摘An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.