Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Theref...Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.展开更多
The vibrational levels and potential energy surface of a stable structure for S2O in the excited electronic states C^1A' were carried out with algebraic method. The vibrational spectra were obtained (with total quan...The vibrational levels and potential energy surface of a stable structure for S2O in the excited electronic states C^1A' were carried out with algebraic method. The vibrational spectra were obtained (with total quantum number v=20) by fitting 30 spectra data. The fitted rms(root mean square) error based on the Hamiltonian witb 9 parameters was 2.40 cm^-1. The dissociation energy and force constant were also determined by the analytical potential energy surface. The method is proved to be effective by comparing these results with the experimental data.展开更多
Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Ther...Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.展开更多
The energy levels of a hydrogen atom, derived by Bohr, are known to be approximations. This is because the classical quantum theory of Bohr does not take the theory of relativity into account. In this paper, the kinet...The energy levels of a hydrogen atom, derived by Bohr, are known to be approximations. This is because the classical quantum theory of Bohr does not take the theory of relativity into account. In this paper, the kinetic energy and momentum of an electron in a hydrogen atom are treated relativistically. A clearer argument is developed while also referring to papers published in the past. The energy levels of a hydrogen atom predicted by this paper almost match the theoretical values of Bohr. It is difficult to experimentally distinguish the two. However, this paper predicts the existence of an n = 0 energy level that cannot be predicted even with Dirac’s relativistic quantum mechanics. The only quantum number treated in this paper is n. This point falls far short of a finished quantum mechanics. However, even in discussion at the level of this paper, it can be concluded that quantum mechanics is an incomplete theory.展开更多
Based on the determinative factors school of capital structure theory, this paper uses the data of 35 Chinese energy listed companies from 2000 to 2003, and adopts multi-variable regression method to make an empirical...Based on the determinative factors school of capital structure theory, this paper uses the data of 35 Chinese energy listed companies from 2000 to 2003, and adopts multi-variable regression method to make an empirical study of the influencing factors of their capital structure. The results indicate that the factors of size, income volatility, and the concentration of owner’s equity have positive relation with the capital structure, while the relation between profit- ability and capital structure is negative. It is also found that the influencing of growth and secured asset on the capital structure are relatively insignificant.展开更多
A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone...A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone and Hume-Rothery condition of phase stability have been verified. It is found that by increasing valence electron concentration VEC the diameter of Fermi sphere 2kF increases which leads to the increase in the diameter of Brillouin zone which arises from the decrease in volume of the unit cell. It is found that the electrical resistivity increases by increasing VEC due to the decrease in relaxation time τ with increasing VEC. Also it has been confirmed that the correlation between Young’s modulus and the axial ratio c/a of β-Sn unit cell.展开更多
A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that proces...A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.展开更多
The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a th...The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the helical equilibrium configuration of DNA in salt solution. In this paper, the Kirchhoff's equations in the presence of interracial traction and the free energy density functions of different configurations are studied. The transition formula of the free energy between B-DNA and Z- DNA is obtained, and the results show that the free energy of the transition is mainly determined by the salt concentra- tion, which agrees well with the experimental data.展开更多
A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It ...A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.展开更多
Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residin...Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula.展开更多
Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticit...Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticity in the vacuum bounded by them. The geometry resulting from an arbitrarily extended Casimir plates along their axis of rotation is similar to van Stockum spacetime. We observe closed timelike curves (CTC’s) forming in the exterior of the system resulting from frame dragging. The exterior geometry of this system is similar to Kerr geometry, but because of violation of ANEC, the Cauchy horizon lies outside the system unlike Kerr blackholes, giving more emphasis on whether spacetime is multiply connected at the microscopic level.展开更多
文摘Bohr assumed a quantum condition when deriving the energy levels of a hydrogen atom. This famous quantum condition was not derived logically, but it beautifully explained the energy levels of the hydrogen atom. Therefore, Bohr’s quantum condition was accepted by physicists. However, the energy levels predicted by the eventually completed quantum mechanics do not match perfectly with the predictions of Bohr. For this reason, it cannot be said that Bohr’s quantum condition is a perfectly correct assumption. Since the mass of an electron which moves inside a hydrogen atom varies, Bohr’s quantum condition must be revised. However, the newly derived relativistic quantum condition is too complex to be assumed at the beginning. The velocity of an electron in a hydrogen atom is known as the Bohr velocity. This velocity can be derived from the formula for energy levels derived by Bohr. The velocity <em>v </em>of an electron including the principal quantum number <em>n</em> is given by <em>αc</em>/<em>n</em>. This paper elucidates the fact that this formula is built into Bohr’s quantum condition. It is also concluded in this paper that it is precisely this velocity formula that is the quantum condition that should have been assumed in the first place by Bohr. From Bohr’s quantum condition, it is impossible to derive the relativistic energy levels of a hydrogen atom, but they can be derived from the new quantum condition. This paper proposes raising the status of the previously-known Bohr velocity formula.
基金This work Was supported by the National Natural Science Foundation of China(NSFCNo.10474050).
文摘The vibrational levels and potential energy surface of a stable structure for S2O in the excited electronic states C^1A' were carried out with algebraic method. The vibrational spectra were obtained (with total quantum number v=20) by fitting 30 spectra data. The fitted rms(root mean square) error based on the Hamiltonian witb 9 parameters was 2.40 cm^-1. The dissociation energy and force constant were also determined by the analytical potential energy surface. The method is proved to be effective by comparing these results with the experimental data.
文摘Einstein derived the energy-momentum relationship which holds in an isolated system in free space. However, this relationship is not applicable in the space inside a hydrogen atom where there is potential energy. Therefore, in 2011, the author derived an energy-momentum relationship applicable to the electron constituting a hydrogen atom. This paper derives that relationship in a simpler way using another method. From this relationship, it is possible to derive the formula for the energy levels of a hydrogen atom. The energy values obtained from this formula almost match the theoretical values of Bohr. However, the relationship derived by the author includes a state that cannot be predicted with Bohr’s theory. In the hydrogen atom, there is an energy level with n = 0. Also, there are energy levels where the relativistic energy of the electron becomes negative. An electron with this negative energy (mass) exists near the atomic nucleus (proton). The name “dark hydrogen atom” is given to matter formed from one electron with this negative mass and one proton with positive mass. Dark hydrogen atoms, dark hydrogen molecules, other types of dark atoms, and aggregates made up of dark molecules are plausible candidates for dark matter, the mysterious type of matter whose true nature is currently unknown.
文摘The energy levels of a hydrogen atom, derived by Bohr, are known to be approximations. This is because the classical quantum theory of Bohr does not take the theory of relativity into account. In this paper, the kinetic energy and momentum of an electron in a hydrogen atom are treated relativistically. A clearer argument is developed while also referring to papers published in the past. The energy levels of a hydrogen atom predicted by this paper almost match the theoretical values of Bohr. It is difficult to experimentally distinguish the two. However, this paper predicts the existence of an n = 0 energy level that cannot be predicted even with Dirac’s relativistic quantum mechanics. The only quantum number treated in this paper is n. This point falls far short of a finished quantum mechanics. However, even in discussion at the level of this paper, it can be concluded that quantum mechanics is an incomplete theory.
文摘Based on the determinative factors school of capital structure theory, this paper uses the data of 35 Chinese energy listed companies from 2000 to 2003, and adopts multi-variable regression method to make an empirical study of the influencing factors of their capital structure. The results indicate that the factors of size, income volatility, and the concentration of owner’s equity have positive relation with the capital structure, while the relation between profit- ability and capital structure is negative. It is also found that the influencing of growth and secured asset on the capital structure are relatively insignificant.
文摘A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone and Hume-Rothery condition of phase stability have been verified. It is found that by increasing valence electron concentration VEC the diameter of Fermi sphere 2kF increases which leads to the increase in the diameter of Brillouin zone which arises from the decrease in volume of the unit cell. It is found that the electrical resistivity increases by increasing VEC due to the decrease in relaxation time τ with increasing VEC. Also it has been confirmed that the correlation between Young’s modulus and the axial ratio c/a of β-Sn unit cell.
文摘A modified uncertainty principle coupling the intervals of energy and time can lead to the shortest distance attained in course of the excitation process, as well as the shortest possible time interval for that process. These lower bounds are much similar to the interval limits deduced on both the experimental and theoretical footing in the era when the Heisenberg uncertainty principle has been developed. In effect of the bounds existence, a maximal nuclear charge Ze acceptable for the Bohr atomic ion could be calculated. In the next step the velocity of electron transitions between the Bohr orbits is found to be close to the speed of light. This result provides us with the energy spectrum of transitions similar to that obtained in the Bohr’s model. A momentary force acting on the electrons in course of their transitions is estimated to be by many orders larger than a steady electrostatic force existent between the atomic electron and the nucleus.
基金Supported by the National Nature Science Foundation of China(No.11372210)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110010)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC28000)
文摘The Kirchhoff thin elastic rod models are always the important basis to explore the configuration mecha- nism of the flexible structures in both the macroscopic and microscopic scale. As a continuum model of DNA, a thin elastic rod subjected to interfacial interactions is used to investigate the helical equilibrium configuration of DNA in salt solution. In this paper, the Kirchhoff's equations in the presence of interracial traction and the free energy density functions of different configurations are studied. The transition formula of the free energy between B-DNA and Z- DNA is obtained, and the results show that the free energy of the transition is mainly determined by the salt concentra- tion, which agrees well with the experimental data.
文摘A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.
文摘Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula.
文摘Squeezed quantum vacua seems to violate the averaged null energy conditions (ANEC’s), because they have a negative energy density. When treated as a perfect fluid, rapidly rotating Casimir plates will create vorticity in the vacuum bounded by them. The geometry resulting from an arbitrarily extended Casimir plates along their axis of rotation is similar to van Stockum spacetime. We observe closed timelike curves (CTC’s) forming in the exterior of the system resulting from frame dragging. The exterior geometry of this system is similar to Kerr geometry, but because of violation of ANEC, the Cauchy horizon lies outside the system unlike Kerr blackholes, giving more emphasis on whether spacetime is multiply connected at the microscopic level.