The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and...The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long time and wide scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous bearing and paleo pool bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.展开更多
Ar- 39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu-Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isoc...Ar- 39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu-Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isochron age shown on the spectra are 56.53± 0.43 Ma, 55.52± 1.78 Ma and 55.90± 0.29 Ma respectively. The age data are consistent with each other within 1σ uncertainties. Because the given initial 40Ar/ 36Ar value of 294.7± 1.14 is very close to Nier’s value ( 295.5±5), both plateau and isochron ages may be considered as the forming time of quartz. So the age of 55.90- 56.53 Ma represents the forming age of ore deposits. It is obvious that the ore deposits were formed during the Early Himalayan period.展开更多
Based on the analysis of features and problems of green lands in mountainous parks in towns concentration areas,the paper has illustrated the significance for vegetations'recovery.By taking Tashan Park in Neijiang...Based on the analysis of features and problems of green lands in mountainous parks in towns concentration areas,the paper has illustrated the significance for vegetations'recovery.By taking Tashan Park in Neijiang City for example,it has investigated the eco-environment and vegetations of this park.The results show that its terrain is precipitous,eco-environment is weak,slope vegetation is less,rocks'exposing rate is high and community structure is simple.In view of the survey results,it has proposed two methods for vegetation recovery that are natural recovery and artificial recovery.In particular,it has explored how to conduct vegetation recovery on green lands of different gradients of slopes by using plants'selection and community disposition.展开更多
The gold concentration areas in the northwestern Jiaodong Peninsula constituted an important gold metallogenetic region in Eastern China during the Mesozoic. The deep geological bodies' texture characteristic is impo...The gold concentration areas in the northwestern Jiaodong Peninsula constituted an important gold metallogenetic region in Eastern China during the Mesozoic. The deep geological bodies' texture characteristic is important for exploring the resources thoroughly and understanding the metallogenic process. The detailed textures were revealed using high-resolution seismic profiles through the three major ore-controlling structures-Sanshandao fault zone, Jiaojia fault zone and Zhaoping fault zone. This study aims to establish a deep structural framework of this area. Based on their formation mechanism, the fault structures developed in the area can be divided into regional and local fault structures. The structural styles are characterised by superimposing their compressional, strike-slip and extensional multi-stage activities. The crust is cut by vertical structures corresponding to a left-lateral strike-slip fault system on the surface. Nearby these structures are the arc-shape structures formed by multi-stage magma intrusions into the upper crust. Bounded by the Tancheng–Lujiang and Muping–Jimo fault zones, the current Jiaodong block, developed a series of NE-trending strike-slip fault systems, was probably formed by the assemblage of several obliquely aligned blocks. The intensive magmatism and hydrothermal activity between the blocks induced large-scale mineralisation. It provides a new angle of view for understanding the cratonic destruction and large ore-concentration formed during the Mesozoic.展开更多
Town-and-city concentration area is confronted with ecological degeneration due to the expansion of urbanization,and enriching urban bio-diversity is conducive to the improvement of ecological function of urban green ...Town-and-city concentration area is confronted with ecological degeneration due to the expansion of urbanization,and enriching urban bio-diversity is conducive to the improvement of ecological function of urban green system.The paper has studied how to increase urban bio-diversity by making use of urban green lands for protection and construction of wild animals' habitats,and proposed the significance and theoretical idea for protection and construction of wild animals' habitats.By taking ecological green lands design in Qinglongchang of Chengdu City for example,it has analyzed the current situation of animals' diversity;proposed to plan corridor,construct biological channel and provide multiporous habitats;listed plants' selection and collocation mode;and finally illustrated how to set artificial facilities for attraction of animals.It hopes to provide a reference for the design of ecological green lands in cities advocating the harmonious development of living environment and natural environment.展开更多
Excessive use of nitrogen (N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary....Excessive use of nitrogen (N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary. Previous studies mostly established critical N dilution curves based on aboveground dry matter (DM) or leaf dry matter (LDM) and stem dry matter (SDM), to diagnose the N nutrition status of the whole plant. As these methods are time consuming, we investigated the more rapidly determined leaf area index (LAI) method to establish the critical nitrogen (Nc) dilution curve, and the curve was used to diagnose plant N status for winter wheat in Guanzhong Plain in Northwest China. Field experiments were conducted using four N fertilization levels (0, 105, 210 and 315 kg ha?1) applied to six wheat cultivars in the 2013–2014 and 2014–2015 growing seasons. LAI, DM, plant N concentration (PNC) and grain yield were determined. Data points from four cultivars were used for establishing the Nc curve and data points from the remaining two cultivars were used for validating the curve. The Nc dilution curve was validated for N-limiting and non-N-limiting growth conditions and there was good agreement between estimated and observed values. The N nutrition index (NNI) ranged from 0.41 to 1.25 and the accumulated plant N deficit (Nand) ranged from 60.38 to –17.92 kg ha?1 during the growing season. The relative grain yield was significantly affected by NNI and was adequately described with a parabolic function. The Nc curve based on LAI can be adopted as an alternative and more rapid approach to diagnose plant N status to support N fertilization decisions during the vegetative growth of winter wheat in Guanzhong Plain in Northwest China.展开更多
Bubble surface area flux(S_b) is one of the main design parameter in flotation column that typically employed to describe the gas dispersion properties, and it has a strong correlation with the flotation rate constant...Bubble surface area flux(S_b) is one of the main design parameter in flotation column that typically employed to describe the gas dispersion properties, and it has a strong correlation with the flotation rate constant. There is a limited information available in the literature regarding the effect of particle type,density, wettability and concentration on Sb. In this paper, computational fluid dynamics(CFD) simulations are performed to study the gas–liquid–solid three-phase flow dynamics in flotation column by employing the Eulerian–Eulerian formulation with k-e turbulence model. The model is developed by writing Fortran subroutine and incorporating then into the commercial CFD code AVL FIRE, v.2014.This paper studies the effects of superficial gas velocities and particle type, density, wettability and concentration on Sband bubble concentration in the flotation column. The model has been validated against published experimental data. It was found that the CFD model was able to predict, where the response variable as indicated by R-Square value of 0.98. These results suggest that the developed CFD model is reasonable to describe the flotation column reactor. From the CFD results, it is also found that Sb decreased with increasing solid concentration and hydrophobicity, but increased with increasing superficial gas velocity. For example, approximately 28% reduction in the surface area flux is observed when coal concentration is increased from 0 to 10%, by volume. While for the same solid concentration and gas flow rate, the bubble surface area flux is approximately increased by 7% in the presences of sphalerite.A possible explanation for this might be that increasing solid concentration and hydrophobicity promotes the bubble coalescence rate leading to the increase in bubble size. Also, it was found that the bubble concentration would decrease with addition of hydrophobic particle(i.e., coal). For instance, under the same operating conditions, approximately 23% reduction in the bubble concentration is predicted when the system was working with hydrophobic particles. The results presented are useful for understanding flow dynamics of three-phase system and provide a basis for further development of CFD model for flotation column.展开更多
Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperatur...Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice,for example,reservoir water.The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage.The experiment set the soil temperatures at 18℃,24℃and 30℃under two irrigation methods(flood and drip irrigation),respectively.The results showed that,at the 30℃soil temperature,drip irrigation increased total root length by 53%but reduced root water conductivity by 9%compared with flood irrigation.Drip irrigation also increased leaf abscisic acid and proline concentrations by 13%and 5%,respectively.These results indicated that drip irrigated rice was under mild water stress.In the 18℃soil temperature,drip irrigation reduced hydraulic conductivity by 58%,leaf water potential by 40%and leaf net photosynthesis by 25%compared with flood irrigation.The starch concentration in male gametes was also 30%less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18℃.Therefore,the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate.Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate,which is the main reason for the reduced yield of drip irrigated rice.Overall,the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment,causing declines both in the starch content of male gametes and in pollination rate.Low temperature will ultimately affect the rice yield under drip irrigation.展开更多
Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of bas...Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of basal internodes persists.The objectives of this study were(1)to identify key factors affecting the elongation of basal internodes and(2)to establish a quantitative relationship between basal internode length and canopy indices.An inbred rice cultivar,Yinjingruanzhan,was grown in two split-plot field experiments with three N rates(0,75,and 150 kg N ha−1 in early season and 0,90,and 180 kg N ha−1 in late season)as main plots,three seedling densities(16.7,75.0,and 187.5 seedlings m−2)as subplots,and three replications in the 2015 early and late seasons in Guangzhou,China.Light intensity at base of canopy(Lb),light quality as determined from red/far-red light ratio(R/FR),light transmission ratio(LTR),leaf area index(LAI),leaf N concentration(NLV)and final length of second internode(counted from soil surface upward)(FIL)were recorded.Higher N rate and seedling density resulted in significantly longer FIL.FIL was negatively correlated with Lb,LTR,and R/FR(P<0.01)and positively correlated with LAI(P<0.01),but not correlated with NLV(P>0.05).Stepwise linear regression analysis showed that FIL was strongly associated with Lb and LAI(R2=0.82).Heavy N application to pot-grown rice at the beginning of first internode elongation did not change FIL.We conclude that FIL is determined mainly by Lb and LAI at jointing stage.NLV has no direct effect on the elongation of basal internodes.N application indirectly affects FIL by changing LAI and light conditions in the rice canopy.Reducing LAI and improving canopy light transmission at jointing stage can shorten the basal internodes and increase the lodging resistance of rice.展开更多
The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of l...The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.展开更多
Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss u...Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.展开更多
The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great sign...The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.展开更多
The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 ...The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m-3, with a maximum monthly mean concentration of 827 mg m-3 in January and a minimum value of 679 mg m-3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m-2 s-1, with a maximum monthly mean flux of 0.91 mg m-2 s-1 in January and a minimum value of 0.19 mg m-2 s-1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700-0900 LST and a minimum at 1400-1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700-0900 LST and 2100-2400 LST, and two minima at 1100-1500 LST and 0300-0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.展开更多
Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is us...Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is used to adaptively decompose the sea level time series in order to extract the secular trend component. Then the linear relationship between the global mean sea level (GMSL) change and the Zhujiang (Pearl) River Delta (PRD) sea level change is calculated: an increase of 1.0 m in the GMSL corresponds to a 1.3 m (uncertainty interval from 1.25 to 1.46 m) increase in the PRD. Based on this relationship and the GMSL rise projected by the Coupled Model Intercomparison Project Phase 5 under three greenhouse gas emission scenarios (representative concentration pathways, or RCPs, from low to high emission scenarios RCP2.6, RCP4.5, and RCP8.5), the PRD sea level is calculated and projected for the period 2006-2100. By around the year 2050, the PRD sea level will rise 0.29 (0.21 to 0.40) m under RCP2.6, 0.31 (0.22 to 0.42) m under RCP4.5, and 0.34 (0.25 to 0.46) m under RCP8.5, respectively. By 2100, it will rise 0.59 (0.36 to 0.88) m, 0.71 (0.47 to 1.02) m, and 1.0 (0.68 to 1.41) m, respectively. In addition, considering the extreme value of relative sea level due to land subsidence (i.e., 0.20 m) and that obtained from intermonthly variability (i.e., 0.33 m), the PRD sea level will rise 1.94 m by the year 2100 under the RCP8.5 scenario with the upper uncertainty level (i.e., 1.41 m). Accordingly, the potential submerged area is 8.57x103 km2 for the PRD, about 1.3 times its present area.展开更多
Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measu...Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measures have been taken to enhance maize competitive ability. But there are some difficulties in concentrating production to maize advantaged areas. This paper expounds the basis that Jilin Province becomes the advantage area of maize,analyzes the problems and puts forward the supporting policy. Some strategic measures are proposed,as developing comparable advantages,carrying out the strategy of un-equilibrium development and cultivating advantaged product areas of maize to rapidly improve the international competitive ability and productivity of maize in Jilin Province,cast the agricultural predicament off and promote the agricultural development into a new stage.展开更多
From August 1994 to July 1995, ozone and its precursors were measured in the clean areas of China. The results show that in the period of crop growth, hourly mean ozone concentration, ozone concentration averaged in s...From August 1994 to July 1995, ozone and its precursors were measured in the clean areas of China. The results show that in the period of crop growth, hourly mean ozone concentration, ozone concentration averaged in seven hours of daytime and accumulated ozone concentration in long period have approached or overpassed the harmful level in environmental and health standard of U. S. A. and Canada.展开更多
The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients,whose traditional mathematical calculation methods are very compl...The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients,whose traditional mathematical calculation methods are very complex.A numerical simulation method can be used to calculate the gas concentration field,but it also needs considerable amounts of computer resources and the relations of gas concentration at different points of the gob area are undefined.Based on the model of stream tubes,the conservation equations of mass and gas components within the stream tube are used to deduce the equations of a gas concentration field in a gob area with a known velocity field.This method of calculation of a gas concentration field is applied in a gob area with a U-type ventilation working face,which suggests that this new method has the virtue of exact calculations is simple to operate and has a clear physical interpretation.展开更多
The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metal...The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.展开更多
Objective The Miao'ershan-Yuechengling composite granite, located in northern Guangxi at the western section of the Nanling Range, is a multi-period and multi-stage composite pluton with an exposed area of more than...Objective The Miao'ershan-Yuechengling composite granite, located in northern Guangxi at the western section of the Nanling Range, is a multi-period and multi-stage composite pluton with an exposed area of more than 3000 km2 (Fig. 1). Paleozoic and Proterozoic strata are exposed around it, and magmatic activities mainly occurred during the Caledonian and Indosinian periods. Till now, more than one hundred W-Sn-Mo-Pb-Zn-Cu (U) deposits and ore occurrences have been discovered along the inner and outer contact zones of this granite. Through recent years' research, we infer that this area is not only a preferred area for studying granite and mineralization in Caledonian and lndosinian periods, but also a potential Caledonian- lndosinian ore-concentrated area.展开更多
文摘The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long time and wide scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous bearing and paleo pool bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.
文摘Ar- 39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu-Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isochron age shown on the spectra are 56.53± 0.43 Ma, 55.52± 1.78 Ma and 55.90± 0.29 Ma respectively. The age data are consistent with each other within 1σ uncertainties. Because the given initial 40Ar/ 36Ar value of 294.7± 1.14 is very close to Nier’s value ( 295.5±5), both plateau and isochron ages may be considered as the forming time of quartz. So the age of 55.90- 56.53 Ma represents the forming age of ore deposits. It is obvious that the ore deposits were formed during the Early Himalayan period.
基金Supported by Research on Comprehensive Technical Specification for Ecological Construction of Urban Green Lands that is National Science and Technology Support Plan Issue of"Eleventh Five-Year Plan"(2008BAJ10B06)~~
文摘Based on the analysis of features and problems of green lands in mountainous parks in towns concentration areas,the paper has illustrated the significance for vegetations'recovery.By taking Tashan Park in Neijiang City for example,it has investigated the eco-environment and vegetations of this park.The results show that its terrain is precipitous,eco-environment is weak,slope vegetation is less,rocks'exposing rate is high and community structure is simple.In view of the survey results,it has proposed two methods for vegetation recovery that are natural recovery and artificial recovery.In particular,it has explored how to conduct vegetation recovery on green lands of different gradients of slopes by using plants'selection and community disposition.
基金supported by a project of Special Research on Land and Research Public Welfare Industry(201511029)founded by Ministry of Land and Resources of the People’s Republic of China
文摘The gold concentration areas in the northwestern Jiaodong Peninsula constituted an important gold metallogenetic region in Eastern China during the Mesozoic. The deep geological bodies' texture characteristic is important for exploring the resources thoroughly and understanding the metallogenic process. The detailed textures were revealed using high-resolution seismic profiles through the three major ore-controlling structures-Sanshandao fault zone, Jiaojia fault zone and Zhaoping fault zone. This study aims to establish a deep structural framework of this area. Based on their formation mechanism, the fault structures developed in the area can be divided into regional and local fault structures. The structural styles are characterised by superimposing their compressional, strike-slip and extensional multi-stage activities. The crust is cut by vertical structures corresponding to a left-lateral strike-slip fault system on the surface. Nearby these structures are the arc-shape structures formed by multi-stage magma intrusions into the upper crust. Bounded by the Tancheng–Lujiang and Muping–Jimo fault zones, the current Jiaodong block, developed a series of NE-trending strike-slip fault systems, was probably formed by the assemblage of several obliquely aligned blocks. The intensive magmatism and hydrothermal activity between the blocks induced large-scale mineralisation. It provides a new angle of view for understanding the cratonic destruction and large ore-concentration formed during the Mesozoic.
基金Supported by National Science and Technology Support Program in "11 th Five-Year Plan"(2008BAJ10B06)~~
文摘Town-and-city concentration area is confronted with ecological degeneration due to the expansion of urbanization,and enriching urban bio-diversity is conducive to the improvement of ecological function of urban green system.The paper has studied how to increase urban bio-diversity by making use of urban green lands for protection and construction of wild animals' habitats,and proposed the significance and theoretical idea for protection and construction of wild animals' habitats.By taking ecological green lands design in Qinglongchang of Chengdu City for example,it has analyzed the current situation of animals' diversity;proposed to plan corridor,construct biological channel and provide multiporous habitats;listed plants' selection and collocation mode;and finally illustrated how to set artificial facilities for attraction of animals.It hopes to provide a reference for the design of ecological green lands in cities advocating the harmonious development of living environment and natural environment.
基金financial support from the National Key Research and Development Program of China (2017YFC0403303)the Shanxi Agricultural University of Science and Technology Innovation Fund, China (2016YJ07 and 2016007)
文摘Excessive use of nitrogen (N) fertilizers in agricultural systems increases the cost of production and risk of environmental pollution. Therefore, determination of optimum N requirements for plant growth is necessary. Previous studies mostly established critical N dilution curves based on aboveground dry matter (DM) or leaf dry matter (LDM) and stem dry matter (SDM), to diagnose the N nutrition status of the whole plant. As these methods are time consuming, we investigated the more rapidly determined leaf area index (LAI) method to establish the critical nitrogen (Nc) dilution curve, and the curve was used to diagnose plant N status for winter wheat in Guanzhong Plain in Northwest China. Field experiments were conducted using four N fertilization levels (0, 105, 210 and 315 kg ha?1) applied to six wheat cultivars in the 2013–2014 and 2014–2015 growing seasons. LAI, DM, plant N concentration (PNC) and grain yield were determined. Data points from four cultivars were used for establishing the Nc curve and data points from the remaining two cultivars were used for validating the curve. The Nc dilution curve was validated for N-limiting and non-N-limiting growth conditions and there was good agreement between estimated and observed values. The N nutrition index (NNI) ranged from 0.41 to 1.25 and the accumulated plant N deficit (Nand) ranged from 60.38 to –17.92 kg ha?1 during the growing season. The relative grain yield was significantly affected by NNI and was adequately described with a parabolic function. The Nc curve based on LAI can be adopted as an alternative and more rapid approach to diagnose plant N status to support N fertilization decisions during the vegetative growth of winter wheat in Guanzhong Plain in Northwest China.
基金the Higher Committee for Education Development in Iraq (HCED) for their financial support
文摘Bubble surface area flux(S_b) is one of the main design parameter in flotation column that typically employed to describe the gas dispersion properties, and it has a strong correlation with the flotation rate constant. There is a limited information available in the literature regarding the effect of particle type,density, wettability and concentration on Sb. In this paper, computational fluid dynamics(CFD) simulations are performed to study the gas–liquid–solid three-phase flow dynamics in flotation column by employing the Eulerian–Eulerian formulation with k-e turbulence model. The model is developed by writing Fortran subroutine and incorporating then into the commercial CFD code AVL FIRE, v.2014.This paper studies the effects of superficial gas velocities and particle type, density, wettability and concentration on Sband bubble concentration in the flotation column. The model has been validated against published experimental data. It was found that the CFD model was able to predict, where the response variable as indicated by R-Square value of 0.98. These results suggest that the developed CFD model is reasonable to describe the flotation column reactor. From the CFD results, it is also found that Sb decreased with increasing solid concentration and hydrophobicity, but increased with increasing superficial gas velocity. For example, approximately 28% reduction in the surface area flux is observed when coal concentration is increased from 0 to 10%, by volume. While for the same solid concentration and gas flow rate, the bubble surface area flux is approximately increased by 7% in the presences of sphalerite.A possible explanation for this might be that increasing solid concentration and hydrophobicity promotes the bubble coalescence rate leading to the increase in bubble size. Also, it was found that the bubble concentration would decrease with addition of hydrophobic particle(i.e., coal). For instance, under the same operating conditions, approximately 23% reduction in the bubble concentration is predicted when the system was working with hydrophobic particles. The results presented are useful for understanding flow dynamics of three-phase system and provide a basis for further development of CFD model for flotation column.
基金supported by the National High Technology Research and Development Program of China(2011AA100508)the National Natural Science Foundation of China(31471947,31860587)
文摘Drip irrigation can produce high rice yields with significant water savings;therefore,it is widely used in arid area water-scarce northern China.However,high-frequency irrigation of drip irrigation with low temperature well water leads to low root zone temperature and significantly reduce the rice yield compared to normal temperature water irrigated rice,for example,reservoir water.The main purpose of this paper is to investigate the effects of low soil temperature on the yield reduction of drip irrigated rice in the spike differentiation stage.The experiment set the soil temperatures at 18℃,24℃and 30℃under two irrigation methods(flood and drip irrigation),respectively.The results showed that,at the 30℃soil temperature,drip irrigation increased total root length by 53%but reduced root water conductivity by 9%compared with flood irrigation.Drip irrigation also increased leaf abscisic acid and proline concentrations by 13%and 5%,respectively.These results indicated that drip irrigated rice was under mild water stress.In the 18℃soil temperature,drip irrigation reduced hydraulic conductivity by 58%,leaf water potential by 40%and leaf net photosynthesis by 25%compared with flood irrigation.The starch concentration in male gametes was also 30%less in the drip irrigation treatment than in the flood irrigation treatment at soil temperature 18℃.Therefore,the main reason for the yield reduction of drip irrigated rice was that the low temperature aggravates the physiological drought of rice and leads to the decrease of starch content in male gametes and low pollination fertilization rate.Low temperature aggravates physiological water deficit in drip irrigated rice and leads to lower starch content in male gametes and low pollination fertilization rate,which is the main reason for the reduced yield of drip irrigated rice.Overall,the results indicated that the low soil temperatures aggravated the water stress that rice was under in the drip irrigated environment,causing declines both in the starch content of male gametes and in pollination rate.Low temperature will ultimately affect the rice yield under drip irrigation.
基金supported by the Natural Science Foundation of Guangdong Province,China(S2012020011043)the National High Technology Research and Development Program of China(2014AA10A605)+2 种基金the Special Fund for Agro-scientific Research in the Public Interest(201503106)Modern Agriculture Industry Technology System for Rice in Guangdong Province(2016LM1066,2017LM1066,2018LM1066)the Swiss Agency for Development and Cooperation through its funding of “Closing Rice Yield Gaps in Asia” Project(CORIGAP)
文摘Short basal internodes are important for lodging resistance of rice(Oryza sativa L.).Several canopy indices affect the elongation of basal internodes,but uncertainty as to the key factors determining elongation of basal internodes persists.The objectives of this study were(1)to identify key factors affecting the elongation of basal internodes and(2)to establish a quantitative relationship between basal internode length and canopy indices.An inbred rice cultivar,Yinjingruanzhan,was grown in two split-plot field experiments with three N rates(0,75,and 150 kg N ha−1 in early season and 0,90,and 180 kg N ha−1 in late season)as main plots,three seedling densities(16.7,75.0,and 187.5 seedlings m−2)as subplots,and three replications in the 2015 early and late seasons in Guangzhou,China.Light intensity at base of canopy(Lb),light quality as determined from red/far-red light ratio(R/FR),light transmission ratio(LTR),leaf area index(LAI),leaf N concentration(NLV)and final length of second internode(counted from soil surface upward)(FIL)were recorded.Higher N rate and seedling density resulted in significantly longer FIL.FIL was negatively correlated with Lb,LTR,and R/FR(P<0.01)and positively correlated with LAI(P<0.01),but not correlated with NLV(P>0.05).Stepwise linear regression analysis showed that FIL was strongly associated with Lb and LAI(R2=0.82).Heavy N application to pot-grown rice at the beginning of first internode elongation did not change FIL.We conclude that FIL is determined mainly by Lb and LAI at jointing stage.NLV has no direct effect on the elongation of basal internodes.N application indirectly affects FIL by changing LAI and light conditions in the rice canopy.Reducing LAI and improving canopy light transmission at jointing stage can shorten the basal internodes and increase the lodging resistance of rice.
基金granted by the National Natural Science Foundation of China(grants No.41302067,41472067 and 41403043)the Fundamental Research Funds of Chinese Academy of Geological Sciences(grant No.YYWF201614 and 09 program of Institute of Geomechanics)IGCP/SIDA–600,and China Geological Survey(grant No.DD20160053)
文摘The Lanping Basin in the Nujiang-Lancangjiang-Jinshajiang (the Sanjiang) area of northeastern margin of the Tibetan Plateau is an important part of eastern Tethyan metallogenic domain. This basin hosts a number of large unique sediment-hosted Pb-Zn polymetallic deposits or ore districts, such as the Baiyangping ore concentration area which is one of the representative ore district. The Baiyangping ore concentration area can be divided into the east and west ore belts, which were formed in a folded tectogene of the India-Asia continental coUisional setting and was controlled by a large reverse fault. Field observations reveal that the Mesozoic and Cenozoic sedimentary strata were outcropped in the mining area, and that the orebodies are obviously controlled by faults and hosted in sandstone and carbonate rocks. However, the oreforming elements in the east ore belt are mainly Pb-Zn -Sr-Ag, while Pb-Zn-Ag-Cu-Co elements are dominant in the west ore belt. Comparative analysis of the C-O-Sr-S-Pb isotopic compositions suggest that both ore belts had a homogeneous carbon source, and the carbon in hydrothermal calcite is derived from the dissolution of carbonate rock strata; the ore- forming fluids were originated from formation water and precipitate water, which belonged to basin brine fluid system; sulfur was from organic thermal chemical sulfate reduction and biological sulfate reduction; the metal mineralization material was from sedimentary strata and basement, but the difference of the material source of the basement and the strata and the superimposed mineralization of the west ore belt resulted in the difference of metallogenic elements between the eastern and western metallogenic belts. The Pb-Zn mineralization age of both ore belts was contemporary and formed in the same metaliogenetic event. Both thrust formed at the same time and occurred at the Early Oligocene, which is consistent with the age constrained by field geological relationship.
基金the support for this research from the National Basic Research Program of China(Grant No.2007CB407206)the National Natural Science Foundation of China(Grant No.40921061)The National Basic Research Program of China(Grant No.2010CB950702)
文摘Soil erosion by water under forest cover is a serious problem in southern China.A comparative study was carried out on the use of leaf area index(LAI) and vegetation fractional coverage(VFC) in quantifying soil loss under vegetation cover.Five types of vegetation with varied LAI and VFC under field conditions were exposed to two rainfall rates(40 mm h-1 and 54 mm h-1) using a portable rainfall simulator.Runoff rate,sediment concentration and soil loss rate were measured at relatively runoff stable state.Significant negative exponential relationship(p < 0.05,R2 = 0.83) and linear relationship(p < 0.05,R2 = 0.84) were obtained between LAI and sediment concentration,while no significant relationship existed between VFC and sediment concentration.The mechanism by which vegetation canopy prevents soil loss was by reducing rainfall kinetic energy and sediment concentration.LAI could better quantify such a role than VFC.However,neither LAI nor VFC could explain runoff rate or soil loss rate.Caution must be taken when using LAI to quantify the role of certain vegetation in soil and water conservation.
基金supported by the Science and Technology Research Project to Henan Provincial Department of Natural Resources(Henan Natural Resources Letter[2019]373–10)。
文摘The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.
基金funded by the Korea Meteorological Administration Research and Development Program under the Weather Information Service Engine (WISE) project (Grant No.153-3100-3133-302-350)
文摘The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m-3, with a maximum monthly mean concentration of 827 mg m-3 in January and a minimum value of 679 mg m-3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m-2 s-1, with a maximum monthly mean flux of 0.91 mg m-2 s-1 in January and a minimum value of 0.19 mg m-2 s-1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700-0900 LST and a minimum at 1400-1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700-0900 LST and 2100-2400 LST, and two minima at 1100-1500 LST and 0300-0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences No.XDA11010404the National Natural Science Foundation of China under contract Nos 41375096,41175079 and 41405082the Macao Meteorological and Geophysical Bureau Project under contract No.9231048
文摘Projections of potential submerged area due to sea level rise are helpful for improving understanding of the influence of ongoing global warming on coastal areas. The Ensemble Empirical Mode Decomposition method is used to adaptively decompose the sea level time series in order to extract the secular trend component. Then the linear relationship between the global mean sea level (GMSL) change and the Zhujiang (Pearl) River Delta (PRD) sea level change is calculated: an increase of 1.0 m in the GMSL corresponds to a 1.3 m (uncertainty interval from 1.25 to 1.46 m) increase in the PRD. Based on this relationship and the GMSL rise projected by the Coupled Model Intercomparison Project Phase 5 under three greenhouse gas emission scenarios (representative concentration pathways, or RCPs, from low to high emission scenarios RCP2.6, RCP4.5, and RCP8.5), the PRD sea level is calculated and projected for the period 2006-2100. By around the year 2050, the PRD sea level will rise 0.29 (0.21 to 0.40) m under RCP2.6, 0.31 (0.22 to 0.42) m under RCP4.5, and 0.34 (0.25 to 0.46) m under RCP8.5, respectively. By 2100, it will rise 0.59 (0.36 to 0.88) m, 0.71 (0.47 to 1.02) m, and 1.0 (0.68 to 1.41) m, respectively. In addition, considering the extreme value of relative sea level due to land subsidence (i.e., 0.20 m) and that obtained from intermonthly variability (i.e., 0.33 m), the PRD sea level will rise 1.94 m by the year 2100 under the RCP8.5 scenario with the upper uncertainty level (i.e., 1.41 m). Accordingly, the potential submerged area is 8.57x103 km2 for the PRD, about 1.3 times its present area.
文摘Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measures have been taken to enhance maize competitive ability. But there are some difficulties in concentrating production to maize advantaged areas. This paper expounds the basis that Jilin Province becomes the advantage area of maize,analyzes the problems and puts forward the supporting policy. Some strategic measures are proposed,as developing comparable advantages,carrying out the strategy of un-equilibrium development and cultivating advantaged product areas of maize to rapidly improve the international competitive ability and productivity of maize in Jilin Province,cast the agricultural predicament off and promote the agricultural development into a new stage.
文摘From August 1994 to July 1995, ozone and its precursors were measured in the clean areas of China. The results show that in the period of crop growth, hourly mean ozone concentration, ozone concentration averaged in seven hours of daytime and accumulated ozone concentration in long period have approached or overpassed the harmful level in environmental and health standard of U. S. A. and Canada.
基金Financial support for this work,provided by the Doctor Startup Foundation of Xi'an University of Science & Technology
文摘The control equations of gas concentration field in gob areas with a known velocity field are partial differential equations with variable coefficients,whose traditional mathematical calculation methods are very complex.A numerical simulation method can be used to calculate the gas concentration field,but it also needs considerable amounts of computer resources and the relations of gas concentration at different points of the gob area are undefined.Based on the model of stream tubes,the conservation equations of mass and gas components within the stream tube are used to deduce the equations of a gas concentration field in a gob area with a known velocity field.This method of calculation of a gas concentration field is applied in a gob area with a U-type ventilation working face,which suggests that this new method has the virtue of exact calculations is simple to operate and has a clear physical interpretation.
基金granted by the Geological Survey Program of China Geological Survey (Grant No.1212011086074 and 12120113036500)
文摘The Bangong Lake-Nujiang River metallogenic belt is located between the Qiangtang Block and Lhasa Block, and the Duolong ore concentration area is located in the western section of the Bangong Lake-Nujiang River metallogenic belt. Till now, several large and super large copper-gold deposits, such as Duobuza, Bolong, Dibaonamugang, Naruo and Rongna deposits have been discovered in this area, mainly porphyry copper-gold ones.
基金supported by the National Natural Science Foundation of China(grants No.41572058 and 41672065)
文摘Objective The Miao'ershan-Yuechengling composite granite, located in northern Guangxi at the western section of the Nanling Range, is a multi-period and multi-stage composite pluton with an exposed area of more than 3000 km2 (Fig. 1). Paleozoic and Proterozoic strata are exposed around it, and magmatic activities mainly occurred during the Caledonian and Indosinian periods. Till now, more than one hundred W-Sn-Mo-Pb-Zn-Cu (U) deposits and ore occurrences have been discovered along the inner and outer contact zones of this granite. Through recent years' research, we infer that this area is not only a preferred area for studying granite and mineralization in Caledonian and lndosinian periods, but also a potential Caledonian- lndosinian ore-concentrated area.