An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the de...An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.展开更多
Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) ...Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.展开更多
An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model stru...An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results展开更多
Taking the pilot test area of polymer enhanced foam flooding in Y oilfield as the prototype, a numerical core model was established, and the polymer enhanced foam formulation system was optimized by analyzing the resi...Taking the pilot test area of polymer enhanced foam flooding in Y oilfield as the prototype, a numerical core model was established, and the polymer enhanced foam formulation system was optimized by analyzing the resistance factor and the change rule of oil recovery of different formulation systems. Research shows that the higher the polymer concentration, the greater the resistance factor, and the more obvious the sealing effect formed in the formation. The concentration of surfactant has a greater impact on the resistance factor. With the increase of surfactant concentration, the resistance factor increases significantly, and the plugging effect of foam agent on core is significantly enhanced. With the increase of gas-liquid ratio, the resistance factor first increases and then decreases. When the gas-liquid ratio is 1:1, the resistance is the largest, and the foam agent has the strongest plugging effect on the core. The optimal formula system of polymer enhanced foam flooding in Y oilfield is: polymer concentration is 1200 mg/L, surfactant concentration is 0.25 wt%, gas-liquid ratio is 1:1.展开更多
It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer cha...It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer chain and the sequence distribution of constituent chains in entanglement spacings. A unified quantity for the three combing factors is the average constrained dimensional number of constituent chains in the long entanglement spacings (v). A new relation of v to the primary molecular weight and the number of testing polymers were derived from the multiple entanglement and reptation model, and a new method for determining v was proposed. The dependences of linear viscoelastic functions on the primary molecular weight and its distribution were derived by the statistical method. When Mn=6Me to 18 Me, the values of (v) can range from 3.33 to 3.70. Their values are in a good agreement with the experiment data, and it can slightjy vary with the different species of polymers and the different ranges of molecular weight of polymers展开更多
Macroporous titania monoliths were prepared via sol-gel method using polymer foam as templates. The polymer foam polymerized via concentrated emulsion polymerization was immerged in a solution of titanium(Ⅳ) isopro...Macroporous titania monoliths were prepared via sol-gel method using polymer foam as templates. The polymer foam polymerized via concentrated emulsion polymerization was immerged in a solution of titanium(Ⅳ) isopropoxide in 2-propanol, which underwent a sol-gel process. The organic components were subsequently removed by calcination. The effects of various parameters, including the nature of the monomer, the volume fraction of dispersed phase of the concentrated emulsion, and concentration of the sol-gel solution were investigated. The SEM micrographs of the macroporous titania monoliths thus obtained showed that the porous structure of the final material was effectively controllable.展开更多
文摘An integral constitutive equation and a set of material functions for describing the strain history of polymer melts were formulated in terms of the Cauchy-Green and Finger tensors. A simple memory function and the dependence of ηo and τt on M3.4 were derived from the theory of non-linear viscoelasticity with constraints of entanglements for polymer melts and substituted into the Oldroye-Walters-Fredickson constitutive equation. An integral constitutive equation for polymer melts was consequently obtained. Some material functions of the constitutive equation related to certain 'test flow' are examined as follows : (1) simple steady shear flow; (2) steady elongation flow; (3) small-amplitude oscillatory shear flow; (4) stress growth upon the inception of steady shear elongation flow; (5) stress relaxation (modulus and compllance). These theoretical relations for simple steady shear flow were compared with experimental data from our laboratory and references for various polymer melts and concentrated solutions. A good agreement between the theory and experiment was achieved.
基金The authors gratefully a.cknowledge financial supportfrom th6 Natiol-al Natural Science Foundatiol- of CI-h-a. The number of
文摘Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.
文摘An approach of stochastically statistical mechanics and a unified molecular theory of nonlinear viscoelasticity with constraints of Nagai chain entanglement for polymer melts have been proposed. A multimode model structure for a single polymer chain with n tail segments and N reversible entanglement sites on the test polymer chain is developed. Based on the above model structure and the mechanism of molecular flow by the dynamical reorganization of entanglement sites, the probability distribution function of the end-to-end vectr for a single polymer chain at entangled state and the viscoelastic free energy of deformation for polymer melts are calculated by using the method of the stochastically statistical mechanics. The four types of stress-strain relation and the memory function are derived from this thery. The above theoretical relations are verified by the experimentaf data for various polymer melts. These relations are found to be in good agreement with the experimental results
文摘Taking the pilot test area of polymer enhanced foam flooding in Y oilfield as the prototype, a numerical core model was established, and the polymer enhanced foam formulation system was optimized by analyzing the resistance factor and the change rule of oil recovery of different formulation systems. Research shows that the higher the polymer concentration, the greater the resistance factor, and the more obvious the sealing effect formed in the formation. The concentration of surfactant has a greater impact on the resistance factor. With the increase of surfactant concentration, the resistance factor increases significantly, and the plugging effect of foam agent on core is significantly enhanced. With the increase of gas-liquid ratio, the resistance factor first increases and then decreases. When the gas-liquid ratio is 1:1, the resistance is the largest, and the foam agent has the strongest plugging effect on the core. The optimal formula system of polymer enhanced foam flooding in Y oilfield is: polymer concentration is 1200 mg/L, surfactant concentration is 0.25 wt%, gas-liquid ratio is 1:1.
文摘It is shown theoretically that the viscoelasticity of polymer melts is determined by three combining factorst they are the primary molecular weight and its distribution, the number of entanglement sites on polymer chain and the sequence distribution of constituent chains in entanglement spacings. A unified quantity for the three combing factors is the average constrained dimensional number of constituent chains in the long entanglement spacings (v). A new relation of v to the primary molecular weight and the number of testing polymers were derived from the multiple entanglement and reptation model, and a new method for determining v was proposed. The dependences of linear viscoelastic functions on the primary molecular weight and its distribution were derived by the statistical method. When Mn=6Me to 18 Me, the values of (v) can range from 3.33 to 3.70. Their values are in a good agreement with the experiment data, and it can slightjy vary with the different species of polymers and the different ranges of molecular weight of polymers
基金Project supported by the National Natural Science Foundation of China (No. 020374006).
文摘Macroporous titania monoliths were prepared via sol-gel method using polymer foam as templates. The polymer foam polymerized via concentrated emulsion polymerization was immerged in a solution of titanium(Ⅳ) isopropoxide in 2-propanol, which underwent a sol-gel process. The organic components were subsequently removed by calcination. The effects of various parameters, including the nature of the monomer, the volume fraction of dispersed phase of the concentrated emulsion, and concentration of the sol-gel solution were investigated. The SEM micrographs of the macroporous titania monoliths thus obtained showed that the porous structure of the final material was effectively controllable.