In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid a...Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.展开更多
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ...The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.展开更多
The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating ...The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating source are carried out to validate this concept. The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time. Simulations are performed to predict the conversion rate of CH4 at the reactor outlet, and are consistent with experimental tendencies. A solar reactor prototype featuring four independent double-walled tubes is then developed. The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy. The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window. The gas composition at the reactor outlet, the chemical conversion of CH4, and the yield to H2 are determined with respect to reaction temperature, inlet gas flow-rates, and feed gas composition. The longer the gas residence time, the higher the CH4 conversion and H2 yield, whereas the lower the amount of acetylene. A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms), A temperature increase from 1870 K to 1970 K does not improve the H2 yield.展开更多
This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the ...This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.展开更多
This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in...This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).展开更多
The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the fr...The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.展开更多
Community park is one of the most important landscape spaces for urban people to live outdoors,and people’s perception of environmental microclimate is a direct factor affecting the use frequency and experience of co...Community park is one of the most important landscape spaces for urban people to live outdoors,and people’s perception of environmental microclimate is a direct factor affecting the use frequency and experience of community parks.In this paper,Shijingshan Sculpture Park of Beijing was taken as experimental object.Using the method of fi eld measurement,9-d winter test for 3 months was conducted in three kinds of landscape architecture spaces,including waterfront plaza,open green space and square under the forest.Via regression analysis method,the measured air temperature(Ta),relative humidity of air(RH),particulate matter(PM2.5)were analyzed.It is found that winter sunshine is main infl uence factor of garden microclimate,and there is a negative correlation between local temperature and humidity;local temperature and humidity can regulate the local PM2.5 concentration,and temperature shows negative correlation with PM2.5 concentration,while humidity shows positive correlation with PM2.5 concentration.Meanwhile,via comparative analysis of temperature,humidity and PM2.5 concentration in different types of garden spaces,the infl uence of different space forms,planting forms and materials on thermal environment of underlying surface and PM2.5 concentration was summarized,and design strategy was optimized,to be as benefi cial reference of reconstruction design of community parks.展开更多
Electrical conductivity of chromium polyacrylate with dopant concentration 30, 40 and 50 wt-% of chromium has been measured over a broad range of temperatures (303 K to 383 K).The electrical conductivity shows depende...Electrical conductivity of chromium polyacrylate with dopant concentration 30, 40 and 50 wt-% of chromium has been measured over a broad range of temperatures (303 K to 383 K).The electrical conductivity shows dependence on temperature, as well as, level of doping. The conductivity is considered to be due to thermal hopping motion of localized charge carriers,which are believed to be polarons, in the temperature range 303 K to 323 K and for T>343 K,whereas. it is metal-like in the temperature range 323 K to 343 K展开更多
The thermal decomposition of pyrite, arsenopyrite and auriferous concentrates in the presence of sodium hydroxide was studied by using TG DTA and XRD methods. For the arsenopyrite mineral the reaction takes place at ...The thermal decomposition of pyrite, arsenopyrite and auriferous concentrates in the presence of sodium hydroxide was studied by using TG DTA and XRD methods. For the arsenopyrite mineral the reaction takes place at 200~350℃ with the formation of Na 2SO 4, Na 3AsO 4, FeSO 4, Fe 8As 10 O 23 and FeAs, and a large amount of FeAsS do not decompose at this temperature. When the temperature arrives at 800℃, the exothermic reaction takes place with the formation of Na 3AsO 4, Na 2SO 4, Fe 2O 3 and a little amount of As 4S 3. For the pyrite mineral the reaction takes place between 200~350℃ with the formation of Fe 2(SO 4) 3, Fe 3S 4, FeS, Na 2Fe(SO 4) 2 in addition to unreacted FeS 2 and NaOH. When the temperature arrives at 800℃, almost all the pyrite decomposes and the Fe 2O 3, Na 2SO 4, Fe(SO 4) 3 and a minor amount of Fe 1- x S are produced. The decomposition temperatures of arsenopyrite and pyrite get lower as their particle sizes are small. The results also indicated that with the addition of an appropriate amount of NaOH, nearly complete containment of arsenic and sulphur during the decomposition of auriferous concentrate may be possible.展开更多
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance ...A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.展开更多
A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework c...A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.展开更多
This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge...This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge) attached to heat source to discharge thermal energy to cooling media. Published HCPV/T models do not consider the effect of shunt resistance which greatly affects the system performance. So, a single diode model employing five parameters including the effect of shunt resistance is adapted to analyze the proposed system. To analyze the thermal performance of the proposed system, a two-dimensional thermal model based on the technique of finite difference is introduced to determine the efficiency of the hybrid HCPV/T system. The present developed subroutines are integrated with other involved codes in TRNSYS software to calculate HCPV/T system efficiency. Electrical and thermal as well as the whole system efficiency at different weather circumstances are evaluated and assessed. The effect of different weather conditions, cell temperature, concentration ratio and the temperatures of the coolant fluid on system performance are studied. Current results indicate that the model of single diode is a reliable one rather than using the two-diode complex model. Compared to measurements provided by high concentrated PV manufacturer, the current results revealed a total root mean square error of approximately 1.94%. Present predictions show that PV cell temperature has logarithmic increase with the rise in concentration ratio but with low values till concentration ratio of 400 suns after that the rise is faster at higher concentration values up to 1500 suns. Results also revealed that hybrid HCPV/T system works effectively specially in severe hot climate where thermal efficiency increases with high surrounding temperature for higher values of concentration ratio. In addition, an increase of approximately 15% in thermal efficiency and 10% in total efficiency can be achieved by utilizing active cooling device in HCPV/T system.展开更多
In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for cop...In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for copper refinement and to create various finished products. It is desirable that in the near future, these copper concentrates be processed in an Argentinean industrial plant. The aim of this paper was to present the results of a characterisation study carried out on five different copper concentrate samples. The thermal decomposition of the copper concentrates was determined by differential thermal analysis and thermogravimetry (DTA TG). The information was correlated with the chemical composition and the mineralogical phases of the samples identified by X-ray diffraction. A melting test at temperatures of up to 1300℃ was performed to complete the study of the concentrate’s behaviour during heating. After the test, all of the samples were observed by light and electronic scanning microscopy to identify the different phases generated under high-temperature conditions.展开更多
The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obt...The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.展开更多
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.
基金supported by the Hebei Province Postdoctoral Merit Funding Program(Grant No.:B2022005004)the Science and Tech-nology Nova Plan of Hebei University of Technology(Grant No.:JBKYXX2207)+2 种基金the National Natural Science Foundation of China(Grant No.:51978231)the S&T Program of Hebei(Project No.:216Z4502G)the Natural Science Foundation of Hebei Province(Grant No.:E2020202196).
文摘The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.
基金European FP6 research project SOLHYCARB (Contract SES-CT-2006-19770)
文摘The thermal pyrolysis of natural gas as a clean hydrogen production route is examined. The concept of a double-walled reactor tube is proposed and implemented. Preliminary experiments using an external plasma heating source are carried out to validate this concept. The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time. Simulations are performed to predict the conversion rate of CH4 at the reactor outlet, and are consistent with experimental tendencies. A solar reactor prototype featuring four independent double-walled tubes is then developed. The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy. The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window. The gas composition at the reactor outlet, the chemical conversion of CH4, and the yield to H2 are determined with respect to reaction temperature, inlet gas flow-rates, and feed gas composition. The longer the gas residence time, the higher the CH4 conversion and H2 yield, whereas the lower the amount of acetylene. A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms), A temperature increase from 1870 K to 1970 K does not improve the H2 yield.
文摘This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping of fourth grade nanofluids in an inclined tapered channel.First,the brief mathematical modelling of the fourth grade nanofluids is provided along with thermal and concentration convection.The Lubrication method is used to simplify the partial differential equations which are tremendously nonlinear.Further,analytical technique is applied to solve the differential equations that are strongly nonlinear in nature,and exact solutions of temperature,volume fraction of nanoparticles,and concentration are studied.Numerical and graphical findings manifest the influence of various physical flow-quantity parameters.It is observed that the nanoparticle fraction decreases because of the increasing values of Brownian motion parameter and Dufour parameter,whereas the behaviour of nanoparticle fraction is quite opposite for thermophoresis parameter.It is also noted that the temperature profile decreases with increasing Brownian motion parameter values and rises with Dufour parameter values.Moreover,the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.
文摘This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner(PTT) fluid with thermal and concentration effect.The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in the respiratory tract.The two-layer model approach was used due to the Peri Ciliary liquid Layer(PCL) and Airway Ciliary Layer(ACL) present on the epithelium cell in respiratory tract.The mathematical modelling of two-layer flow problem was simplified using long wavelength and small Reynold ’ s number approximation.The resulting differential equation with moving boundary gives exact solution for velocity,temperature and concentration profiles in two layers.The change in pressure has calculated by the results of velocity profile,also the pressure rise was evaluated by the numerical integration of pressure gradient along the channel wall.The impact of physical parameters on pressure rise,velocity,temperature and concentration profile was explained by the graphs.It can be seen from graphs that velocity and temperature profile are maximum in the inner layer of fluid(PCL) and concentration profile is maximum at outer layers of fluid(ACL).
基金Funded by the National Natural Science Foundation of China(Nos.12004150,61674073)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110998,2022A1515012123)+4 种基金the Science and Technology Planning Project of Guangdong Province(2017A050506056)the College Physics Teaching Team(114961700249)the Key Basic and Applied Research Project of Guangdong Province(2016KZDXM021)the Major Projects of Basic and Application Research in Guangdong Province(2017KZDXM055)the Natural Science Research Youth Project of Lingnan Normal University(QL1404)。
文摘The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.
基金National Natural Science Foundation of China(51708004)North University of Technology YuYou Talent Training Program(215051360020XN160/009)+1 种基金Beijing Natural Science Foundation(8202017)2018 Beijing Municipal University Academic Human Resources Development—Youth Talent Support Program(PXM2018_014212_000043).
文摘Community park is one of the most important landscape spaces for urban people to live outdoors,and people’s perception of environmental microclimate is a direct factor affecting the use frequency and experience of community parks.In this paper,Shijingshan Sculpture Park of Beijing was taken as experimental object.Using the method of fi eld measurement,9-d winter test for 3 months was conducted in three kinds of landscape architecture spaces,including waterfront plaza,open green space and square under the forest.Via regression analysis method,the measured air temperature(Ta),relative humidity of air(RH),particulate matter(PM2.5)were analyzed.It is found that winter sunshine is main infl uence factor of garden microclimate,and there is a negative correlation between local temperature and humidity;local temperature and humidity can regulate the local PM2.5 concentration,and temperature shows negative correlation with PM2.5 concentration,while humidity shows positive correlation with PM2.5 concentration.Meanwhile,via comparative analysis of temperature,humidity and PM2.5 concentration in different types of garden spaces,the infl uence of different space forms,planting forms and materials on thermal environment of underlying surface and PM2.5 concentration was summarized,and design strategy was optimized,to be as benefi cial reference of reconstruction design of community parks.
文摘Electrical conductivity of chromium polyacrylate with dopant concentration 30, 40 and 50 wt-% of chromium has been measured over a broad range of temperatures (303 K to 383 K).The electrical conductivity shows dependence on temperature, as well as, level of doping. The conductivity is considered to be due to thermal hopping motion of localized charge carriers,which are believed to be polarons, in the temperature range 303 K to 323 K and for T>343 K,whereas. it is metal-like in the temperature range 323 K to 343 K
文摘The thermal decomposition of pyrite, arsenopyrite and auriferous concentrates in the presence of sodium hydroxide was studied by using TG DTA and XRD methods. For the arsenopyrite mineral the reaction takes place at 200~350℃ with the formation of Na 2SO 4, Na 3AsO 4, FeSO 4, Fe 8As 10 O 23 and FeAs, and a large amount of FeAsS do not decompose at this temperature. When the temperature arrives at 800℃, the exothermic reaction takes place with the formation of Na 3AsO 4, Na 2SO 4, Fe 2O 3 and a little amount of As 4S 3. For the pyrite mineral the reaction takes place between 200~350℃ with the formation of Fe 2(SO 4) 3, Fe 3S 4, FeS, Na 2Fe(SO 4) 2 in addition to unreacted FeS 2 and NaOH. When the temperature arrives at 800℃, almost all the pyrite decomposes and the Fe 2O 3, Na 2SO 4, Fe(SO 4) 3 and a minor amount of Fe 1- x S are produced. The decomposition temperatures of arsenopyrite and pyrite get lower as their particle sizes are small. The results also indicated that with the addition of an appropriate amount of NaOH, nearly complete containment of arsenic and sulphur during the decomposition of auriferous concentrate may be possible.
基金supported by the Doctoral Initial Fund of Beijing University of Technology,China(Grant No.X0006015201101)the National Natural Science Foundation of China(Grant Nos.60876006 and 51202007)
文摘A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.
文摘A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.
文摘This work investigates the performance of combined hybrid high concentrated photovoltaic/thermal collector (HCPV/T) in Kuwait harsh climate. The proposed system consists of triple junction solar cells (InGaP/InGaAs/Ge) attached to heat source to discharge thermal energy to cooling media. Published HCPV/T models do not consider the effect of shunt resistance which greatly affects the system performance. So, a single diode model employing five parameters including the effect of shunt resistance is adapted to analyze the proposed system. To analyze the thermal performance of the proposed system, a two-dimensional thermal model based on the technique of finite difference is introduced to determine the efficiency of the hybrid HCPV/T system. The present developed subroutines are integrated with other involved codes in TRNSYS software to calculate HCPV/T system efficiency. Electrical and thermal as well as the whole system efficiency at different weather circumstances are evaluated and assessed. The effect of different weather conditions, cell temperature, concentration ratio and the temperatures of the coolant fluid on system performance are studied. Current results indicate that the model of single diode is a reliable one rather than using the two-diode complex model. Compared to measurements provided by high concentrated PV manufacturer, the current results revealed a total root mean square error of approximately 1.94%. Present predictions show that PV cell temperature has logarithmic increase with the rise in concentration ratio but with low values till concentration ratio of 400 suns after that the rise is faster at higher concentration values up to 1500 suns. Results also revealed that hybrid HCPV/T system works effectively specially in severe hot climate where thermal efficiency increases with high surrounding temperature for higher values of concentration ratio. In addition, an increase of approximately 15% in thermal efficiency and 10% in total efficiency can be achieved by utilizing active cooling device in HCPV/T system.
文摘In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for copper refinement and to create various finished products. It is desirable that in the near future, these copper concentrates be processed in an Argentinean industrial plant. The aim of this paper was to present the results of a characterisation study carried out on five different copper concentrate samples. The thermal decomposition of the copper concentrates was determined by differential thermal analysis and thermogravimetry (DTA TG). The information was correlated with the chemical composition and the mineralogical phases of the samples identified by X-ray diffraction. A melting test at temperatures of up to 1300℃ was performed to complete the study of the concentrate’s behaviour during heating. After the test, all of the samples were observed by light and electronic scanning microscopy to identify the different phases generated under high-temperature conditions.
文摘The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.