Our calculations demonstrate that the concentration of neutral oxygen vacancies can affect the geometrical structrue,electronic structure, and optical properties of α-quartz. Moreover, the distribution of the neutral...Our calculations demonstrate that the concentration of neutral oxygen vacancies can affect the geometrical structrue,electronic structure, and optical properties of α-quartz. Moreover, the distribution of the neutral oxygen divacancy can also exert some influence on the properties of α-quartz. The dissimilarity and similarities are presented in the corresponding density of state(DOS) and absorption spectrum. In addition, when a higher defect concentration is involved in α-quartz,the influence of E1 center on the geometry of α-quartz becomes more significant. However, the introduction of an E1 center barely results in any improvement compared with the influence produced by the corresponding neutral defect.展开更多
During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow...During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 km . Micro particle analysis of the samples indicates that the micro particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain size distributions of micro particle, percentage of micro particles from different sources and variations with altitude suggest that micro particles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro particles are mainly influenced by marine transportation in coastal area.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11176020 and 11374217)the Doctoral Program of Higher Education of China(Grant No.20100181110080)
文摘Our calculations demonstrate that the concentration of neutral oxygen vacancies can affect the geometrical structrue,electronic structure, and optical properties of α-quartz. Moreover, the distribution of the neutral oxygen divacancy can also exert some influence on the properties of α-quartz. The dissimilarity and similarities are presented in the corresponding density of state(DOS) and absorption spectrum. In addition, when a higher defect concentration is involved in α-quartz,the influence of E1 center on the geometry of α-quartz becomes more significant. However, the introduction of an E1 center barely results in any improvement compared with the influence produced by the corresponding neutral defect.
文摘During the Austral summer of 1996/1997, the First Chinese Antarctic Inland Expedition reached the inland area about 330 km along the direction around 76°E from Zhongshan Station, and collected 84 surface snow samples at an interval of 4 km . Micro particle analysis of the samples indicates that the micro particle concentration apparently decreases with the increasing of altitude, and the amplitudes of micro particle concentration is much larger in the lower altitude than in the higher altitude. Further analysis of grain size distributions of micro particle, percentage of micro particles from different sources and variations with altitude suggest that micro particles in this area are from a considerably dominant source. Although this area is controlled by polar easterly wind and katabatic wind, transportation and deposition of the micro particles are mainly influenced by marine transportation in coastal area.