Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experime...Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experimental area to quantitatively estimate the particle concentrations of sand-dust storms using the boundary layer wind-profiling radar. We thoroughly studied the radar echo signals and reflectivity factor features during the sand-dust storms. The results indicate that(1) under sand-dust storm conditions, boundary layer wind-profiling radar cannot capture the complete information regarding horizontal wind velocity and direction, but it can obtain the backscattering intensity of sand-dust storms; and(2) during sand-dust storms particle size distributions in the surface layer closely resemble log-normal distributions, with sand-dust particles sizes of 90–100 μm accounting for the maximum particle probability. Retrieved particle size distributions at heights of 600, 800, and 1000 m follow log-normal distributions, and the expected value of particle diameter decreases gradually with increasing height. From the perspective of orders of magnitude, the retrieved results for particle number concentrations and mass concentrations are consistent with previous aircraft-detected results, indicating that it is basically feasible to use boundary layer wind-profiling radar to quantitatively detect the particle concentrations of dust storms.展开更多
In this paper, we analyze the feature of ultrasonic image and investigate the effect of topography material, flow velocity and sediment concentration on the imaging of underwater topography by imaging experiments of m...In this paper, we analyze the feature of ultrasonic image and investigate the effect of topography material, flow velocity and sediment concentration on the imaging of underwater topography by imaging experiments of model sands. These imaging experiments are conducted in river engineering physical model.The results show that the vertical distribution of pixel values is changed hugely at the position of imaging bright band of underwater topography. The imaging of underwater topography is not affected when flow velocity is below 40 cm/s and sediment concentration is below 5.0 ‰. The main influence factors of imaging signals are flow velocity and sediment concentration near the topographical bed. The resolution of ultrasound imaging signals is high, and the topography consisted of model sands with particle size smaller than 0.1 mm can be monitored well in the river model experiment.展开更多
基金supported by the National Natural Science Foundation of China (41775030, 41575008, 11302111, 11562017)the China Research Foundation for Desert Meteorology (SQJ2014003)the China Postdoctoral Science Foundation
文摘Sand-dust storm is a type of disastrous weather, typically occurring in arid and semi-arid climates. This study selected a region in the hinterlands of the Taklimakan Desert, called the Tazhong region, as the experimental area to quantitatively estimate the particle concentrations of sand-dust storms using the boundary layer wind-profiling radar. We thoroughly studied the radar echo signals and reflectivity factor features during the sand-dust storms. The results indicate that(1) under sand-dust storm conditions, boundary layer wind-profiling radar cannot capture the complete information regarding horizontal wind velocity and direction, but it can obtain the backscattering intensity of sand-dust storms; and(2) during sand-dust storms particle size distributions in the surface layer closely resemble log-normal distributions, with sand-dust particles sizes of 90–100 μm accounting for the maximum particle probability. Retrieved particle size distributions at heights of 600, 800, and 1000 m follow log-normal distributions, and the expected value of particle diameter decreases gradually with increasing height. From the perspective of orders of magnitude, the retrieved results for particle number concentrations and mass concentrations are consistent with previous aircraft-detected results, indicating that it is basically feasible to use boundary layer wind-profiling radar to quantitatively detect the particle concentrations of dust storms.
文摘In this paper, we analyze the feature of ultrasonic image and investigate the effect of topography material, flow velocity and sediment concentration on the imaging of underwater topography by imaging experiments of model sands. These imaging experiments are conducted in river engineering physical model.The results show that the vertical distribution of pixel values is changed hugely at the position of imaging bright band of underwater topography. The imaging of underwater topography is not affected when flow velocity is below 40 cm/s and sediment concentration is below 5.0 ‰. The main influence factors of imaging signals are flow velocity and sediment concentration near the topographical bed. The resolution of ultrasound imaging signals is high, and the topography consisted of model sands with particle size smaller than 0.1 mm can be monitored well in the river model experiment.