In this paper we first improve the concentration- compactness lemma by proving that the vanishing case is a special case of dichotomy, then we apply this improved concentration- compactness lemma to a typical restrct...In this paper we first improve the concentration- compactness lemma by proving that the vanishing case is a special case of dichotomy, then we apply this improved concentration- compactness lemma to a typical restrcted minimization problem, and get some new results.展开更多
In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev crit...In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.展开更多
We discussed a class of p-Laplacian boundary problems on a bounded smooth domain, the nonlinearity is odd symmetric and limit subcritical growing at infinite. A sequence of critical values of the variational functiona...We discussed a class of p-Laplacian boundary problems on a bounded smooth domain, the nonlinearity is odd symmetric and limit subcritical growing at infinite. A sequence of critical values of the variational functional was constructed after the general- ized Palais-Smale condition was verified. We obtain that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite. The result is a generalization of a similar problem in the case of subcritical.展开更多
In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△...In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.展开更多
We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on or...We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on origin as t→∞.展开更多
A 2-coupled nonlinear Schrbdinger equations with bounded varying potentials and strongly attractive interactions is considered. When the attractive interaction is strong enough, the existence of a ground state for suf...A 2-coupled nonlinear Schrbdinger equations with bounded varying potentials and strongly attractive interactions is considered. When the attractive interaction is strong enough, the existence of a ground state for sufficiently small Planck constant is proved. As the Planck constant approaches zero, it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.展开更多
We consider the scattering of Cauchy problem for the focusing combined power-type Schroodinger equation. In the spirit of concentration-compactness method, we will show that, H1 solution will scatter under some condit...We consider the scattering of Cauchy problem for the focusing combined power-type Schroodinger equation. In the spirit of concentration-compactness method, we will show that, H1 solution will scatter under some condition on its energy and mass. We adapt some variance argument, following the idea of Ibrahim–Masmoudi–Nakanishi.展开更多
We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential crit...We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential critical growth.The approaches used here are based on a version of the Trudinger–Moser inequality and a minimax theorem.展开更多
In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotical...In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods.展开更多
The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, wherethe Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globallysurperquadratic in x and T-periodic...The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, wherethe Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globallysurperquadratic in x and T-periodic in t. The Concentration-Compactness Lemma and Mini-max argument are used to prove the existences.展开更多
In this paper,we present the singular supercritical Trudinger-Moser inequalities on the unit ball B in Rn,where n≥2.More precisely,we show that for any given α>0 and 0<t<n,then the following two inequalitie...In this paper,we present the singular supercritical Trudinger-Moser inequalities on the unit ball B in Rn,where n≥2.More precisely,we show that for any given α>0 and 0<t<n,then the following two inequalities hold for ∀u∈W^1,n0,r(B),∫Bsup∣▽u∣^ndx≤1∫Bexp((αn,t+∣x∣^α∣)u∣^n/n-1)/∣x∣^tdx<∞ and ∫Bsup∣▽u∣^ndx≤1∫Bexp(αn,t+∣u∣^n/n-1+∣x∣^α)/∣x∣^tdx<∞.We also consider the problem of the sharpness of the constantαn,t.Furthermore,by employing the method of estimating the lower bound and using the concentration-compactness principle,we establish the existence of extremals.These results extend the known results when t=0 to the singular version for 0<t<n.展开更多
In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4...In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness.展开更多
In this paper,we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition.In particular,we will obtain a sharp mass quantization result for the solution sequ...In this paper,we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition.In particular,we will obtain a sharp mass quantization result for the solution sequences at a blow-up point.展开更多
In this paper we consider the biharmonic equation (?) in a smooth bounded domain Ω (?) RN with boundary condition (?) where N ≥5, 1 < q < 2, λ>0 and 2= (2N)/(N-4). We prove the existence of λ such that fo...In this paper we consider the biharmonic equation (?) in a smooth bounded domain Ω (?) RN with boundary condition (?) where N ≥5, 1 < q < 2, λ>0 and 2= (2N)/(N-4). We prove the existence of λ such that for 0 < λ < λ the above problem has a positive solution.展开更多
基金Supported by the National Natural Science Foundation of China (No.19871030, 19771039) and Natural Science Foundation of Guangd
文摘In this paper we first improve the concentration- compactness lemma by proving that the vanishing case is a special case of dichotomy, then we apply this improved concentration- compactness lemma to a typical restrcted minimization problem, and get some new results.
基金Supported by NSFC(12171014,ZR2020MA005,ZR2021MA096)。
文摘In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.
基金Project supported by the National Natural Science Foundation of China(No.10371045)the Natural Science Foundation of Guangdong Province of China(No.5005930)
文摘We discussed a class of p-Laplacian boundary problems on a bounded smooth domain, the nonlinearity is odd symmetric and limit subcritical growing at infinite. A sequence of critical values of the variational functional was constructed after the general- ized Palais-Smale condition was verified. We obtain that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite. The result is a generalization of a similar problem in the case of subcritical.
文摘In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.
基金Thiswork was supported by Laboratory of Mathematics for Nonlinear Sciences of Fudan University and the National Natural Science Foundation of China.
文摘We prove the existence of the global, but unbounded solution of the semilinear heat equations with critical Sobolev exponent, and that under some assumptions, the global unbounded classical solution concentrates on origin as t→∞.
基金Research Project of Shanghai Municipal Education Commission(No.07zz83).
文摘A 2-coupled nonlinear Schrbdinger equations with bounded varying potentials and strongly attractive interactions is considered. When the attractive interaction is strong enough, the existence of a ground state for sufficiently small Planck constant is proved. As the Planck constant approaches zero, it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.
基金Supported by National Natural Science Foundation of China(Grant Nos.11226184,11226065,11271322 and11271105)
文摘We consider the scattering of Cauchy problem for the focusing combined power-type Schroodinger equation. In the spirit of concentration-compactness method, we will show that, H1 solution will scatter under some condition on its energy and mass. We adapt some variance argument, following the idea of Ibrahim–Masmoudi–Nakanishi.
基金Natural Science Foundation of China(Grant Nos.11601190 and 11661006)Natural Science Foundation of Jiangsu Province(Grant No.BK20160483)Jiangsu University Foundation Grant(Grant No.16JDG043)。
文摘We study the existence of solutions for the following class of nonlinear Schr?dinger equations-ΔN u+V(x)u=K(x)f(u)in R^N where V and K are bounded and decaying potentials and the nonlinearity f(s)has exponential critical growth.The approaches used here are based on a version of the Trudinger–Moser inequality and a minimax theorem.
基金the National Natural Science Foundation of China(No.1063103)Science Fund For Creative Research Groups of National Natural Science Foundation of China(No.10721101).
文摘In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods.
基金Project supported by the National Natural Science Foundation of China,and the Zhejiang Natural Science Foundation.
文摘The existence of at least two homoclinic orbits for Lagrangian system (LS) is proved, wherethe Lagrangian L(t,x,y) =1/2∑aij(x)yiyj-V(t, x), in which the potential V(t,x) is globallysurperquadratic in x and T-periodic in t. The Concentration-Compactness Lemma and Mini-max argument are used to prove the existences.
基金Supported by NSFC(Grant No.11901031)Beijing Institute of Technology Research Fund Program for Young Scholars(Grant No.3170012221903)。
文摘In this paper,we present the singular supercritical Trudinger-Moser inequalities on the unit ball B in Rn,where n≥2.More precisely,we show that for any given α>0 and 0<t<n,then the following two inequalities hold for ∀u∈W^1,n0,r(B),∫Bsup∣▽u∣^ndx≤1∫Bexp((αn,t+∣x∣^α∣)u∣^n/n-1)/∣x∣^tdx<∞ and ∫Bsup∣▽u∣^ndx≤1∫Bexp(αn,t+∣u∣^n/n-1+∣x∣^α)/∣x∣^tdx<∞.We also consider the problem of the sharpness of the constantαn,t.Furthermore,by employing the method of estimating the lower bound and using the concentration-compactness principle,we establish the existence of extremals.These results extend the known results when t=0 to the singular version for 0<t<n.
基金supported by National Natural Science Foundation of China(Grant Nos.11771468 and 11971027)supported by National Natural Science Foundation of China(Grant Nos.11771234 and 11926323)。
文摘In this paper we study the nonhomogeneous semilinear fractional Schr?dinger equation with critical growth{(−∆)su + u = u^2∗s−1 + λ(f(x, u) + h(x)), x ∈ R^N ,u ∈ Hs(R^N ), u(x) > 0, x ∈ RN ,where s∈(0,1),N>4 s,andλ>0 is a parameter,2s*=2 N/N-2 s is the fractional critical Sobolev exponent,f and h are some given functions.We show that there exists 0<λ*<+∞such that the problem has exactly two positive solutions ifλ∈(0,λ*),no positive solutions forλ>λ*,a unique solution(λ*,uλ*)ifλ=λ*,which shows that(λ*,uλ*)is a turning point in Hs(RN)for the problem.Our proofs are based on the variational methods and the principle of concentration-compactness.
文摘In this paper,we analyze the asymptotic behavior of solution sequences of the Liouville-type equation with Neumann boundary condition.In particular,we will obtain a sharp mass quantization result for the solution sequences at a blow-up point.
基金Supported by National Natural Science Foundation of China(l0171032)Natural Science Foundation of Guangdong Province(011606).
文摘In this paper we consider the biharmonic equation (?) in a smooth bounded domain Ω (?) RN with boundary condition (?) where N ≥5, 1 < q < 2, λ>0 and 2= (2N)/(N-4). We prove the existence of λ such that for 0 < λ < λ the above problem has a positive solution.