期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low-strain binary hexacyanoferrate nanocuboids with concentration-gradient structure towards fast and durable energy storage
1
作者 Yutong Lin Bing Han +6 位作者 Donglan Zhang Xueya Liu Zili Wang Zhengyu Wang Liang Si Sen Zhang Chao Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期72-84,I0004,共14页
The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(... The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(y)Mn_(1-y)[Fe(CN)_(6)]·nH_(2)O(KFeMnHCF)nanocuboid,with the concentration-gradient(CG)structure is designed as a high-performance cathode for AKIB.Internal the CG-KFeMnHCF nanocuboids,the manganese content gradually decreases from the interior to the surface and the iron content changes reverse,resulting in the concentration-gradient structure.Both experimental and finite element simulation(FEA)results demonstrate the lower internal stress and better mechanical characteristics of CG structured nanocuboid than the homogenous structured one upon ion intercalation/deintercalation processes.Meanwhile,the electrochemical testing and theoretical calculation(DFT)results disclose the substitution of Fe to Mn in the KMnHCF crystal results in the enhanced electronic conductivity,potassium migration and electrochemical kinetics.Taken both advantages from the well-designed architecture and optimized crystal structure,the CG-KFeMnHCF achieves the superior rate capability and ultrahigh stability in aqueous potassium ion system.In particular,the CG-KFe_(0.31)Mn_(0.69)HCF achieves the best comprehensive properties among all the samples.The full AKIBs based on CG-KFe_(0.31)Mn_(0.69)HCF cathode achieves the high energy density(83 Wh kg^(-1)),superior power density,high capacity retention(83%)over high-rate long-term cycles,good adaptation to a wide temperature range(-20 to 40℃)and high reliability even under outside deformations.Therefore,this work not only provides a new clue to design the highperformance cathode,but also promotes the applications of AKIBs for diverse electronics and wide working environments. 展开更多
关键词 concentration-gradient structure Binary hexacyanoferrate nanocuboid AKIBs Low-strain FEA modeling
下载PDF
Facile electrodeposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors 被引量:9
2
作者 Mingyang Yang Hua Cheng +10 位作者 Yingying Gu Zhifang Sun Jing Hu Lujie Cao Fucong Lv Minchan Li Wenxi Wang Zhenyu Wang Shaofei Wu Hongtao Liu Zhouguang Lu 《Nano Research》 SCIE EI CAS CSCD 2015年第8期2744-2754,共11页
Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigat... Novel three-dimensional (3D) concentration-gradient Ni-Co hydroxide nanostructures (3DCGNC) have been directly grown on nickel foam by a facile stepwise electrochemical deposition method and intensively investigated as binder- and conductor-free electrode for supercapacitors. Based on a three- electrode electrochemical characterization technique, the obtained 3DCGNC electrodes demonstrated a high specific capacitance of 1,760 F·g^-1 and a remarkable rate capability whereby more than 62.5% capacitance was retained when the current density was raised from 1 to 100 A·g^-1. More importantly, asymmetric supercapacitors were assembled by using the obtained 3DCGNC as the cathode and Ketjenblack as a conventional activated carbon anode. The fabricated asymmetric supercapacitors exhibited very promising electrochemical performances with an excellent combination of high energy density of 103.0 Wh·kg^-1 at a power density of 3.0 kW·kg^-1, and excellent rate capability-energy densities of about 70.4 and 26.0 Wh·kg^-1 were achieved when the average power densities were increased to 26.2 and 133.4 kW·kg^-1, respectively. Moreover, an extremely stable cycling life with only 2.7% capacitance loss after 20,000 cycles at a current density of 5 A·g^-1 was achieved, which compares very well with the traditional doublelayer supercapacitors. 展开更多
关键词 ELECTRODEPOSITION concentration-gradient nickel cobalt hydroxides SUPERCAPACITORS
原文传递
Synthesis and electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 as a concentration-gradient cathode material for lithium batteries 被引量:3
3
作者 Long-Wei Liang Ke Du +2 位作者 Zhong-Dong Peng Yan-Bing Cao Guo-Rong Hu 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第6期883-886,共4页
A well-ordered and spherical LiNi0.6Co0.2Mn0.2O2 cathode material was successfully synthesized from Ni and Mn concentration-gradient precursors via co-precipitation. The crystal structure, morphology and electrochemic... A well-ordered and spherical LiNi0.6Co0.2Mn0.2O2 cathode material was successfully synthesized from Ni and Mn concentration-gradient precursors via co-precipitation. The crystal structure, morphology and electrochemical properties of LiNi0.6Co0.2Mn0.2O2 were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and charge-discharge tests. The material delivered an initial discharge capacity of 174.3 mAh/g at 180 mA/g (1 C rate) between 2.8 and 4.3 V and more than 93.1% of that was retained after 100 cycles. In addition, it also exhibited excellent rate capability, high cut-off voltage and temperature performance. 展开更多
关键词 Lithium secondary batterie sLiNi0.6Co0.2Mn0.2O2 concentration-gradient Electrochemical performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部