This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical ...This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system.展开更多
This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation met...This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.展开更多
基金Northeast Electric Power Design Institute of China Under Grant No.K07-T716
文摘This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system.
文摘This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing(CCB) and cylindrical friction damper(CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses(decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.