When tens and even hundreds of schemas are involved in the integration process, criteria are needed for choosing clusters of schemas to be integrated, so as to deal with the integration problem through an efficient it...When tens and even hundreds of schemas are involved in the integration process, criteria are needed for choosing clusters of schemas to be integrated, so as to deal with the integration problem through an efficient iterative process. Schemas in clusters should be chosen according to cohesion and coupling criteria that are based on similarities and dissimilarities among schemas. In this paper, we propose an algorithm for a novel variant of the correlation clustering approach that addresses the problem of assisting a designer in integrating a large number of conceptual schemas. The novel variant introduces upper and lower bounds to the number of schemas in each cluster, in order to avoid too complex and too simple integration contexts respectively. We give a heuristic for solving the problem, being an NP hard combinatorial problem. An experimental activity demonstrates an appreciable increment in the effectiveness of the schema integration process when clusters are computed by means of the proposed algorithm w.r.t, the ones manually defined by an expert.展开更多
The book chapter is an extended version of the research paper entitled “Use of Component Integration Services in Multidatabase Systems”, which is presented and published by the 13<sup>th</sup> ISITA, the...The book chapter is an extended version of the research paper entitled “Use of Component Integration Services in Multidatabase Systems”, which is presented and published by the 13<sup>th</sup> ISITA, the National Conference of Recent Trends in Mathematical and Computer Sciences, T.M.B. University, Bhagalpur, India, January 3-4, 2015. Information is widely distributed across many remote, distributed, and autonomous databases (local component databases) in heterogeneous formats. The integration of heterogeneous remote databases is a difficult task, and it has already been addressed by several projects to certain extents. In this chapter, we have discussed how to integrate heterogeneous distributed local relational databases because of their simplicity, excellent security, performance, power, flexibility, data independence, support for new hardware technologies, and spread across the globe. We have also discussed how to constitute a global conceptual schema in the multidatabase system using Sybase Adaptive Server Enterprise’s Component Integration Services (CIS) and OmniConnect. This is feasible for higher education institutions and commercial industries as well. Considering the higher educational institutions, the CIS will improve IT integration for educational institutions with their subsidiaries or with other institutions within the country and abroad in terms of educational management, teaching, learning, and research, including promoting international students’ academic integration, collaboration, and governance. This will prove an innovative strategy to support the modernization and large expansion of academic institutions. This will be considered IT-institutional alignment within a higher education context. This will also support achieving one of the sustainable development goals set by the United Nations: “Goal 4: ensure inclusive and quality education for all and promote lifelong learning”. However, the process of IT integration into higher educational institutions must be thoroughly evaluated, identifying the vital data access points. In this chapter, Section 1 provides an introduction, including the evolution of various database systems, data models, and the emergence of multidatabase systems and their importance. Section 2 discusses component integration services (CIS), OmniConnect and considering heterogeneous relational distributed local databases from the perspective of academics, Section 3 discusses the Sybase Adaptive Server Enterprise (ASE), Section 4 discusses the role of component integration services and OmniConnect of Sybase ASE under the Multidatabase System, Section 5 shows the database architectural framework, Section 6 provides an implementation overview of the global conceptual schema in the multidatabase system, Section 7 discusses query processing in the CIS, and finally, Section 8 concludes the chapter. The chapter will help our students a lot, as we have discussed well the evolution of databases and data models and the emergence of multidatabases. Since some additional useful information is cited, the source of information for each citation is properly mentioned in the references column.展开更多
Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitor...Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitoring sensors. To tackle the challenge of heterogenous schema, an instance-based approach for schema mapping, named instance-based machine-learning (IML) approach was described. And to solve the problem of heterogenous instance, a novel approach, called statistic-based clustering (SBC) approach, which utilized clustering and statistics technologies to match large scale sources holistically, was also proposed. These two algorithms utilized the machine-leaning and clustering technology to improve the accuracy. Experimental analysis shows that the IML approach is more precise than SBC approach, reaching at least precision of 81% and recall rate of 82%. Simulation studies further show that SBC can tackle large scale sources holisticalty with 85% recall rate when there are 38 data sources.展开更多
文摘When tens and even hundreds of schemas are involved in the integration process, criteria are needed for choosing clusters of schemas to be integrated, so as to deal with the integration problem through an efficient iterative process. Schemas in clusters should be chosen according to cohesion and coupling criteria that are based on similarities and dissimilarities among schemas. In this paper, we propose an algorithm for a novel variant of the correlation clustering approach that addresses the problem of assisting a designer in integrating a large number of conceptual schemas. The novel variant introduces upper and lower bounds to the number of schemas in each cluster, in order to avoid too complex and too simple integration contexts respectively. We give a heuristic for solving the problem, being an NP hard combinatorial problem. An experimental activity demonstrates an appreciable increment in the effectiveness of the schema integration process when clusters are computed by means of the proposed algorithm w.r.t, the ones manually defined by an expert.
文摘The book chapter is an extended version of the research paper entitled “Use of Component Integration Services in Multidatabase Systems”, which is presented and published by the 13<sup>th</sup> ISITA, the National Conference of Recent Trends in Mathematical and Computer Sciences, T.M.B. University, Bhagalpur, India, January 3-4, 2015. Information is widely distributed across many remote, distributed, and autonomous databases (local component databases) in heterogeneous formats. The integration of heterogeneous remote databases is a difficult task, and it has already been addressed by several projects to certain extents. In this chapter, we have discussed how to integrate heterogeneous distributed local relational databases because of their simplicity, excellent security, performance, power, flexibility, data independence, support for new hardware technologies, and spread across the globe. We have also discussed how to constitute a global conceptual schema in the multidatabase system using Sybase Adaptive Server Enterprise’s Component Integration Services (CIS) and OmniConnect. This is feasible for higher education institutions and commercial industries as well. Considering the higher educational institutions, the CIS will improve IT integration for educational institutions with their subsidiaries or with other institutions within the country and abroad in terms of educational management, teaching, learning, and research, including promoting international students’ academic integration, collaboration, and governance. This will prove an innovative strategy to support the modernization and large expansion of academic institutions. This will be considered IT-institutional alignment within a higher education context. This will also support achieving one of the sustainable development goals set by the United Nations: “Goal 4: ensure inclusive and quality education for all and promote lifelong learning”. However, the process of IT integration into higher educational institutions must be thoroughly evaluated, identifying the vital data access points. In this chapter, Section 1 provides an introduction, including the evolution of various database systems, data models, and the emergence of multidatabase systems and their importance. Section 2 discusses component integration services (CIS), OmniConnect and considering heterogeneous relational distributed local databases from the perspective of academics, Section 3 discusses the Sybase Adaptive Server Enterprise (ASE), Section 4 discusses the role of component integration services and OmniConnect of Sybase ASE under the Multidatabase System, Section 5 shows the database architectural framework, Section 6 provides an implementation overview of the global conceptual schema in the multidatabase system, Section 7 discusses query processing in the CIS, and finally, Section 8 concludes the chapter. The chapter will help our students a lot, as we have discussed well the evolution of databases and data models and the emergence of multidatabases. Since some additional useful information is cited, the source of information for each citation is properly mentioned in the references column.
基金Projects(2007AA01Z126, 2007AA01Z474) supported by the National High-Tech Research and Development Program of ChinaProject(NCET-06-0928) supported by the Program for New Century Excellent Talents in University
文摘Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitoring sensors. To tackle the challenge of heterogenous schema, an instance-based approach for schema mapping, named instance-based machine-learning (IML) approach was described. And to solve the problem of heterogenous instance, a novel approach, called statistic-based clustering (SBC) approach, which utilized clustering and statistics technologies to match large scale sources holistically, was also proposed. These two algorithms utilized the machine-leaning and clustering technology to improve the accuracy. Experimental analysis shows that the IML approach is more precise than SBC approach, reaching at least precision of 81% and recall rate of 82%. Simulation studies further show that SBC can tackle large scale sources holisticalty with 85% recall rate when there are 38 data sources.