The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm...The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.展开更多
In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the projec...In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the project,an overview of ultrasonic testing technology in bridge concrete pile foundation testing,and an analysis of its practical application in the concrete pile foundation testing of this project.The objective of this analysis is to provide some reference for the application of ultrasonic testing technology and the improvement of the quality of bridge concrete pile foundation testing.展开更多
We quantitatively study magnetic anomalies of reinforcement rods in bored insitu concrete piles for the first time and summarized their magnetic anomaly character. Key factors such as measuring borehole orientation, b...We quantitatively study magnetic anomalies of reinforcement rods in bored insitu concrete piles for the first time and summarized their magnetic anomaly character. Key factors such as measuring borehole orientation, borehole-reinforcement distance, and multiple-section reinforcement rods are discussed which contributes valid and quantitative reference for using the magnetic method to detect reinforcement rods. Through tests with model piles, we confirm the accuracy of theoretical computations and then utilize the law discovered in theoretical computations to explain the characteristics of the actual testing curves. The results show that the Za curves of the reinforcement rod reflect important factors regarding the reinforcement rods, such as rod length, change of reinforcement ratio, length of overlap, and etc. This research perfects the magnetic method for detecting reinforcement rods in bored in-situ concrete piles and the method has great importance for preventing building contractor fraud.展开更多
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on...With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.展开更多
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i...Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.展开更多
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin...The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.展开更多
The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both ...The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand.展开更多
A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the v...A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the variations in surrounding soil stress.The results showed that the bending patterns of existing XCC piles varied with penetration depth.The lateral response of the existing pile was sensitive to the change in relative density and pile geometry.For example,the bending moment of the existing pile increased along with these parameters.The development of the radial stressσ′r/σ′v0 of the soil around an existing pile showed different trends at various depths during the penetration of the adjacent pile.Moreover,the change in radial stress during the penetration of the XCC pile did not exhibit the“h/R effect”that was observed in the free-field soil,due to the shielding effect of the existing piles.The peak value of radial stressσ′r_max/σ′v0 decreased exponentially as the radial distance r/R increased.The attenuation ofσ′r_max/σ′v0 with r/R in the loose sand was faster than in the medium-dense or dense sands.Theσ′r_max/σ′v0 at the same soil location increased with the cross-section geometry parameter.展开更多
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob...Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.展开更多
Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scal...Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.展开更多
Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and ...Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future.展开更多
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra...Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.展开更多
Based on constitutive theory of viscoelasticity,the viscoelastic behaviour of concrete pile was investigated.The influence of viscosity coefficient on the stress,displacement and velocity response was discussed.With t...Based on constitutive theory of viscoelasticity,the viscoelastic behaviour of concrete pile was investigated.The influence of viscosity coefficient on the stress,displacement and velocity response was discussed.With the increase of viscosity coefficient,the amplitude of stress wave decreases,and the maximum value of the stress wave shifts to deeper position of the pile.In other words,the viscosity coefficient behaves as lag effect to stress wave.展开更多
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ...In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.展开更多
The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacemen...The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacementratios. The axial force, skin friction, and settlement were evaluated using a model test to assess the performance ofthe pervious concrete pile composite foundation. When the replacement ratio was reduced from 9.26% to 2.32%,the characteristic bearing capacity value was only 14%. Therefore, it may be unreasonable to use the settlementratio method to evaluate this composite foundation's bearing capacity in a model test. Appropriate loading cansignificantly improve the bearing capacity of a pervious concrete pile composite foundation with a lowreplacement ratio. The pile–soil stress ratio exhibited different decreasing ranges in the later loading stage. As theload increased, the axial force of the pervious concrete piles was small and nonobvious, and the average sidefriction resistance of the piles in the foundation with a lower replacement ratio slowly increased.展开更多
Energy pile is a kind of economic and efficient geothermal utilization technology that the ground heat exchanger(GHE)used in ground source heat pump(GSHP)is embedded into building pile foundation to realize heat ex-ch...Energy pile is a kind of economic and efficient geothermal utilization technology that the ground heat exchanger(GHE)used in ground source heat pump(GSHP)is embedded into building pile foundation to realize heat ex-change with surrounding soil.Adding phase change material(PCM)into the energy pile can not only reduce the temperature variation and thermal deformation range of energy pile,but also improve its energy storage and heat transfer performance.In this work,phase change concrete energy pile(PCCEP)is proposed by using PCM as a part of backfill material of energy pile.A three-dimensional numerical model is developed to find the influences of thermal properties of PCCEP on its thermo-mechanical behaviour.According to the model,the in-fluences of thermal conductivity,phase change latent heat(PCLE)and phase change temperature(PCT)on the thermal performance and mechanical characteristics of PCCEP are numerically investigated.It can be seen that for improving heat transfer performance of PCCEP,the thermal conductivity should be increased,but from the perspective of reducing change of pile displacement,axial force and side friction resistance,the thermal conduc-tivity should be reduced.Under heat release mode,lower PCT and larger PCLE contribute to the improvement of thermal performance of PCCEP,and accordingly the rise range of pile temperature,pile displacement change and pile thermal stress can all be reduced.The experimental validation on the model shows that the simulation values of pile wall middle temperature(PWMT)and pile top displacement are agreed well with the corresponding experimental results,the real-time relative error of PWMT and pile top displacement are respectively within 5.1 and 12%.展开更多
基金supported by the Natural Science Foundation of China (Grants No.41101065)the State Key Laboratory of Frozen Soil Engineering Funds (SKLFSE-ZT-34,SKLFSE-ZQ-202103).
文摘The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site.
文摘In this paper,the application strategy of ultrasonic detection technology in the detection of concrete foundation piles is analyzed using a construction project as an example.It includes a basic overview of the project,an overview of ultrasonic testing technology in bridge concrete pile foundation testing,and an analysis of its practical application in the concrete pile foundation testing of this project.The objective of this analysis is to provide some reference for the application of ultrasonic testing technology and the improvement of the quality of bridge concrete pile foundation testing.
基金supported by Transportation Research Project of Jiangsu Province (05Y015),China
文摘We quantitatively study magnetic anomalies of reinforcement rods in bored insitu concrete piles for the first time and summarized their magnetic anomaly character. Key factors such as measuring borehole orientation, borehole-reinforcement distance, and multiple-section reinforcement rods are discussed which contributes valid and quantitative reference for using the magnetic method to detect reinforcement rods. Through tests with model piles, we confirm the accuracy of theoretical computations and then utilize the law discovered in theoretical computations to explain the characteristics of the actual testing curves. The results show that the Za curves of the reinforcement rod reflect important factors regarding the reinforcement rods, such as rod length, change of reinforcement ratio, length of overlap, and etc. This research perfects the magnetic method for detecting reinforcement rods in bored in-situ concrete piles and the method has great importance for preventing building contractor fraud.
基金supported by Program for New Century Excellent Talents in University of China (Grant No.NCET-12-0941)the Fundamental Research Funds for the Central Universities of China (Grant No.A0920502051206-3)
文摘With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.
文摘Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
基金Project (2007H03) supported by Communications Department of Zhejiang Province
文摘The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51878103 and 41831282)the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxtt X0003)。
文摘The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand.
基金supported by the National Natural Science Foundation of China(Nos.52308352,52238009,and 52108321)the Jiangxi Provincial Natural Science Foundation of China(No.20232BAB214082)+1 种基金the Open Research Fund Program of Guangdong Key Laboratory of Earthquake Engineering and Application Technology(No.2020B1212060071)the Science&Technology Project of the Education Department of Jiangxi Province(No.GJJ2200681),China.
文摘A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the variations in surrounding soil stress.The results showed that the bending patterns of existing XCC piles varied with penetration depth.The lateral response of the existing pile was sensitive to the change in relative density and pile geometry.For example,the bending moment of the existing pile increased along with these parameters.The development of the radial stressσ′r/σ′v0 of the soil around an existing pile showed different trends at various depths during the penetration of the adjacent pile.Moreover,the change in radial stress during the penetration of the XCC pile did not exhibit the“h/R effect”that was observed in the free-field soil,due to the shielding effect of the existing piles.The peak value of radial stressσ′r_max/σ′v0 decreased exponentially as the radial distance r/R increased.The attenuation ofσ′r_max/σ′v0 with r/R in the loose sand was faster than in the medium-dense or dense sands.Theσ′r_max/σ′v0 at the same soil location increased with the cross-section geometry parameter.
文摘Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.
基金Project(50621062) supported by the National Natural Science Foundation of China
文摘Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.
基金National Science and Technology Support Program of China(No.2009BAG15B02)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-180)
文摘Taizhou Bridge is a suspension bridge with three pylons and two 1 080 m main spans. The middle pylon is a steel frame with longitudinal herringbone shape and lateral gate shape. The connection between steel pylon and concrete pile cap is a key part to transfer the huge inner force from the pylon to the foundation. Its construction quality is a critical factor to the overall structural loading of the whole bridge ; therefore the contact ratio between the bearing steel plate of pylon and concrete pile cap is required to be over 75 %. The inclined joint surface in two directions, longitudinally at 39/1 920 and laterally at 1/4, posted a challenge to the construction work. A procedure test was carried out to find an optimal construction method by comparison, and finally the post-injection method was selected as it can meet the requirement of concrete strength and contact ratio at the connection. The successful application of the post-injection method in Taizhou Bridge can nrovide an examnle and reference for similar nroiects in the future.
文摘Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.
文摘Based on constitutive theory of viscoelasticity,the viscoelastic behaviour of concrete pile was investigated.The influence of viscosity coefficient on the stress,displacement and velocity response was discussed.With the increase of viscosity coefficient,the amplitude of stress wave decreases,and the maximum value of the stress wave shifts to deeper position of the pile.In other words,the viscosity coefficient behaves as lag effect to stress wave.
文摘In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure.
基金the support from the National Natural Science Foundation of China(Grant No.41977241).
文摘The replacement ratio is an essential factor in evaluating the bearing capacity characteristics of compositefoundations. This study focuses on the bearing capacity of a pervious concrete pile with different replacementratios. The axial force, skin friction, and settlement were evaluated using a model test to assess the performance ofthe pervious concrete pile composite foundation. When the replacement ratio was reduced from 9.26% to 2.32%,the characteristic bearing capacity value was only 14%. Therefore, it may be unreasonable to use the settlementratio method to evaluate this composite foundation's bearing capacity in a model test. Appropriate loading cansignificantly improve the bearing capacity of a pervious concrete pile composite foundation with a lowreplacement ratio. The pile–soil stress ratio exhibited different decreasing ranges in the later loading stage. As theload increased, the axial force of the pervious concrete piles was small and nonobvious, and the average sidefriction resistance of the piles in the foundation with a lower replacement ratio slowly increased.
基金The work is supported by the National Natural Science Founda-tion of China[No.51978599]Key R&D Project of Yangzhou City[No.YZ2019068].
文摘Energy pile is a kind of economic and efficient geothermal utilization technology that the ground heat exchanger(GHE)used in ground source heat pump(GSHP)is embedded into building pile foundation to realize heat ex-change with surrounding soil.Adding phase change material(PCM)into the energy pile can not only reduce the temperature variation and thermal deformation range of energy pile,but also improve its energy storage and heat transfer performance.In this work,phase change concrete energy pile(PCCEP)is proposed by using PCM as a part of backfill material of energy pile.A three-dimensional numerical model is developed to find the influences of thermal properties of PCCEP on its thermo-mechanical behaviour.According to the model,the in-fluences of thermal conductivity,phase change latent heat(PCLE)and phase change temperature(PCT)on the thermal performance and mechanical characteristics of PCCEP are numerically investigated.It can be seen that for improving heat transfer performance of PCCEP,the thermal conductivity should be increased,but from the perspective of reducing change of pile displacement,axial force and side friction resistance,the thermal conduc-tivity should be reduced.Under heat release mode,lower PCT and larger PCLE contribute to the improvement of thermal performance of PCCEP,and accordingly the rise range of pile temperature,pile displacement change and pile thermal stress can all be reduced.The experimental validation on the model shows that the simulation values of pile wall middle temperature(PWMT)and pile top displacement are agreed well with the corresponding experimental results,the real-time relative error of PWMT and pile top displacement are respectively within 5.1 and 12%.