期刊文献+
共找到10,520篇文章
< 1 2 250 >
每页显示 20 50 100
Acoustic Non-Destructive Testing Technology in Concrete Bridge Inspection and Pile Foundation Detection
1
作者 Wei Fu 《Journal of Architectural Research and Development》 2024年第1期20-25,共6页
This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ... This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects. 展开更多
关键词 concrete bridge bridge detection Acoustic detection Non-destructive testing technology
下载PDF
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
2
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research Steel-concrete composite structure cable-stayed bridge Internal force distribution
下载PDF
Development of Optimal Structural System for Hybrid Cable-Stayed Bridges Using Ultra High Performance Concrete 被引量:1
3
作者 Hee Seok Kim Young Jin Kim +1 位作者 Won Jong Chin Hyejin Yoon 《Engineering(科研)》 2013年第9期720-728,共9页
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (... This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified. 展开更多
关键词 HYBRID cable-stayed bridge Ultra High Performance concrete (UHPC) OPTIMAL Structural System DURABILITY
下载PDF
Research review on steel–concrete composite joint of railway hybrid girder cable-stayed bridges 被引量:2
4
作者 Zhou Shi Jiachang Gu +1 位作者 Yongcong Zhou Ying Zhang 《Railway Sciences》 2022年第2期241-259,共19页
Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/me... Purpose–This study aims to research the development trend,research status,research results and existing problems of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge.Design/methodology/approach–Based on the investigation and analysis of the development history,structure form,structural parameters,stress characteristics,shear connector stress state,force transmission mechanism,and fatigue performance,aiming at the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge,the development trend,research status,research results and existing problems are expounded.Findings–The shear-compression composite joint has become the main form in practice,featuring shortened length and simplified structure.The length of composite joints between 1.5 and 3.0 m has no significant effect on the stress and force transmission laws of the main girder.The reasonable thickness of the bearing plate is 40–70 mm.The calculation theory and simplified calculation formula of the overall bearing capacity,the nonuniformity and distribution laws of the shear connector,the force transferring ratio of steel and concrete components,the fatigue failure mechanism and structural parameters effects are the focus of the research study.Originality/value–This study puts forward some suggestions and prospects for the structural design and theoretical research of the steel–concrete composite joint of railway long-span hybrid girder cable-stayed bridge. 展开更多
关键词 RAILWAY Hybrid girder cable-stayed bridge Steel-concrete composite joint STRUCTURE Stress characteristics REVIEW
下载PDF
Seismic fragility analysis of three-tower cable-stayed bridges with different connection configurations
5
作者 Chen Chen Liu Jinlong +1 位作者 Lin Junqi Li Suchao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期1009-1027,共19页
Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study t... Seismic fragility analysis of three-tower cable-stayed bridges with three different structural systems,including rigid system(RS),floating system(FS),and passive energy dissipation system(PEDS),is conducted to study the effects of connection configurations on seismic responses and fragilities.Finite element models of bridges are established using OpenSees.A new ground motion screening method based on the statistical characteristic of the predominant period is proposed to avoid irregular behavior in the selection process of ground motions,and incremental dynamic analysis(IDA)is performed to develop components and systems fragility curves.The effects of damper failure on calculated results for PEDS are examined in terms of seismic response and fragility analysis.The results show that the bridge tower is the most affected component by different structural systems.For RS,the fragility of the middle tower is significantly higher than other components,and the bridge failure starts from the middle tower,exhibiting a characteristic of local failure.For FS and PEDS,the fragility of the edge tower is higher than the middle tower.The system fragility of RS is higher than FS and PEDS.Taking the failure of dampers into account is necessary to obtain reliable seismic capacity of cable-stayed bridges. 展开更多
关键词 seismic fragility cable-stayed bridge connection configuration viscous damper comparison analysis
下载PDF
Comparison study of durability design for concrete bridges:Chinese-code and Eurocode 被引量:2
6
作者 仝腾 刘钊 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期436-440,共5页
Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength... Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength of the two codes are compared and analyzed. Numerical calculations for predicting the durable life of bridges related to carbonization and chlorides corrosion (marine and de-icing) are conducted. The results show that provisions in the two codes can satisfy the durability requirements under carbonization whereas they cannot guarantee the durability for bridges in spray and splash zones. Enhancing the waterproof capacity and reducing the frequent use of de-icing agents are vital to improving the bridge durability. Some recommendations for upgrading the durability are also included. 展开更多
关键词 bridge DURABILITY CARBONIZATION chloride corrosion concrete cover
下载PDF
Fragility curves of concrete bridges retrofitted by column jacketing 被引量:6
7
作者 MasanobuShinozuka Sang-HoonKim +1 位作者 Shigeru Kushiyama Jin-Hak Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期195-205,共11页
The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing.In this respect,this study represents results of fragility curve developmen... The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans' bridges not retrofitted by column jacketing.In this respect,this study represents results of fragility curve development for two (2) sample bridges typical in southern California,strengthened for seismic retrofit by means of steel jacketing of bridge columns.Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit.Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA.The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC (SEAOC-ATC CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit.In this first attempt to formulate the problem of fragility enhancement,the quantification is made by comparing the median values of the fragility curves before and after the retrofit.Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage,the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit. 展开更多
关键词 fragility curves concrete bridges RETROFIT column jacketing nonlinear dynanlic ANALYSIS DUCTILITY
下载PDF
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain 被引量:10
8
作者 Qianyun Zhang Kaveh Barri +1 位作者 Saeed K.Babanajad Amir H.Alavi 《Engineering》 SCIE EI 2021年第12期1786-1796,共11页
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequen... This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network(1D-CNN)and long short-term memory(LSTM)method in the image frequency domain.The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks.In order to improve the training efficiency,images are first transformed into the frequency domain during a preprocessing phase.The algorithm is then calibrated using the flattened frequency data.LSTM is used to improve the performance of the developed network for long sequence data.The accuracy of the developed model is 99.05%,98.9%,and 99.25%,respectively,for training,validation,and testing data.An implementation framework is further developed for future application of the trained model for large-scale images.The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time.The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection. 展开更多
关键词 Crack detection concrete bridge deck Deep learning REAL-TIME
下载PDF
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge 被引量:6
9
作者 Lin Xiankun Zhang Lingmi +1 位作者 Guo Qintao Zhang Yufeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期399-407,共9页
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a... The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge . 展开更多
关键词 prestressed concrete continuous box-girder bridge field ambient vibration testing dynamic characteristics model updating accelerating genetic algorithm objective function
下载PDF
Crack detection of reinforced concrete bridge using video image 被引量:8
10
作者 许薛军 张肖宁 《Journal of Central South University》 SCIE EI CAS 2013年第9期2605-2613,共9页
With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection... With the digital image technology,a crack detection method of reinforced concrete bridge was studied for the performance assessment.The effects including the image gray level,pixel rate,noise filter,and edge detection were analyzed considering cracks qualities.A computer program was developed by visual C++6.0 programming language to detect the cracks,which was tested by 15cases of bridge video images.The results indicate that the relative error is within 6%for cracks larger than 0.3 mm cracks and it is less than 10%for crack width between 0.2 mm and 0.3 mm.In addition,for the crack below 0.1 mm,the relative error is more than30%because the bridge is in safe stage and it is very difficult to detect the actual width of crack. 展开更多
关键词 concrete bridge crack detection computer vision image processing
下载PDF
Earthquake simulation test of circular reinforced concrete bridge column under multidirectional seismic excitation 被引量:4
11
作者 Junichi Sakai Shigeki Unjoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期103-110,共8页
Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced con... Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced concrete bridge columns in order to develop more advanced and reliable design procedures. To investigate such effects, a 1/4 scaled circular reinforced concrete bridge column specimen was tested under two horizontal and one vertical components of a strong motion that has long duration with several strong pulses. Damage progress of reinforced concrete columns subjected to strong excitation was evaluated from the test. The test results demonstrate that the lateral force response in the principal directions become smaller than computed flexural capacity due to the bilateral flexural loading effects, and that the lateral response is not significantly affected by the fluctuation of the axial force because the horizontal response and axial force barely reached the maximum simultaneously due to difference of the predominant natural periods between the vertical and the horizontal directions. Accuracy of fiber analyses is discussed using the test results. 展开更多
关键词 multidirectional seismic excitation reinforced concrete bridge columns shake table test nonlinear dynamic analyses fiber analysis
下载PDF
Numerical investigation of temperature gradient-induced thermal stress for steel–concrete composite bridge deck in suspension bridges 被引量:6
12
作者 WANG Da DENG Yang +1 位作者 LIU Yong-ming LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期185-195,共11页
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit... A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study. 展开更多
关键词 suspension bridge steel–concrete composite bridge deck vertical temperature gradient finite element method thermal stress
下载PDF
Determination of initial cable force of cantilever casting concrete arch bridge using stress balance and influence matrix methods 被引量:7
13
作者 TIAN Zhong-chu PENG Wen-ping +2 位作者 ZHANG Jian-ren JIANG Tian-yong DENG Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3140-3155,共16页
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf... Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge. 展开更多
关键词 concrete arch bridge cantilever casting initial cable force stress balance method influence matrix method
下载PDF
Cellular Automata-based Chloride Ion Diffusion Simulation of Concrete Bridges under Multi-factor Coupling Actions 被引量:2
14
作者 ZHU Jinsong HE Likun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期160-165,共6页
In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The p... In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time, a cellular automata (CA)-based model is proposed. The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained. Considering the impact of various factors such as stress states, temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion, the model of chloride ion diffusion under multi-factor coupling actions is presented. A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method, and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application. The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision. 展开更多
关键词 concrete bridge chloride ion diffusion cellular automata multi-factor coupling actions
下载PDF
Concrete-Filled Steel Tube Arch Bridges in China 被引量:70
15
作者 Jielian Zheng Jianjun wang 《Engineering》 2018年第1期143-155,共13页
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee... In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. 展开更多
关键词 concrete-filled STEEL tube (CFST) ARCH bridge Steel-reinforced concrete ARCH bridge cable-stayed fastening-hanging cantileverassembly VACUUM-ASSISTED pouring in-tube concrete Adjusting load by stay cables
下载PDF
Approach for analyzing the ultimate strength of concrete filled steel tubular arch bridges with stiffening girder 被引量:6
16
作者 ZHANG Zhi-cheng XIE Xu +1 位作者 ZHANG He CHEN Heng-zhi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第5期682-692,共11页
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate... A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge. 展开更多
关键词 Ultimate strength concrete filled steel tubular (CFST) arch bridge Stiffening girder Fiber model beam element Construction process
下载PDF
Improved methods for decreasing stresses of concrete slab of large-span through tied-arch composite bridge 被引量:2
17
作者 周德 叶梅新 罗如登 《Journal of Central South University》 SCIE EI CAS 2010年第3期648-652,共5页
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso... Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously. 展开更多
关键词 composite bridge concrete slab tension through tied-arch large span finite element method
下载PDF
Simplified full-depth precast concrete deck panel systems for accelerated bridge construction 被引量:4
18
作者 Zhongguo John Ma Yulin Zhan +2 位作者 Lin Xiao Lungui Li Weiwei Lu 《Journal of Modern Transportation》 2016年第4期251-260,共10页
A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses... A simplified full-depth precast concrete deck panel system for accelerating bridge construction (ABC) is introduced and a finite dement analysis (FEA) is con- ducted to investigate the static and dynamic responses of this conceptual deck system. The FEA results are compared to those of the traditional full-depth precast concrete deck panel system. The comparison results show that the mechanical behavior of the new deck system is different from that of the traditional deck system. The concrete decks in the new system act as two-way slabs, instead of the one-way slab in the traditional system. Meanwhile, the connections in both the longitudinal and transverse direc- tions may need to accommodate the negative moments. Compared to those in the traditional system, the longitu- dinal nominal stress at middle span increases a lot in the new deck system and the effective flange width varies significantly. In addition, the dynamic results show that the impact factor is influenced by the spacing of connections. Finally, some design concerns of the new deck system are proposed. 展开更多
关键词 Simplified full-depth precast concrete deckpanel systems ~ Accelerated bridge construction ~ Structuralresponse
下载PDF
Time-dependent behavior comparison of long-span concrete arch bridge between prototype and model 被引量:1
19
作者 WANG Yong-bao QIN Peng-ju +2 位作者 LIU Zhi-hua ZHANG Xiao MAO Min 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1565-1577,共13页
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque... Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature. 展开更多
关键词 concrete arch bridge time-dependent behavior finite element model test stiffened skeleton
下载PDF
Health monitoring and comparative analysis of time-dependent effect using different prediction models for self-anchored suspension bridge with extra-wide concrete girder 被引量:1
20
作者 ZHOU Guang-pan LI Ai-qun +1 位作者 LI Jian-hui DUAN Mao-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2025-2039,共15页
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens... The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder. 展开更多
关键词 self-anchored suspension bridge extra-wide concrete girder health monitoring concrete shrinkage and creep prediction model ambient temperature change safety evaluation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部