Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring c...Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.展开更多
The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determine...The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.展开更多
The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area d...The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.展开更多
文摘Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.
文摘The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.
文摘The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.